論文の概要: Divide-and-Conquer Attack: Harnessing the Power of LLM to Bypass Safety Filters of Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2312.07130v3
- Date: Thu, 14 Mar 2024 14:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 01:52:29.058059
- Title: Divide-and-Conquer Attack: Harnessing the Power of LLM to Bypass Safety Filters of Text-to-Image Models
- Title(参考訳): ディバイド・アンド・コンカー攻撃:テキスト・画像モデルの安全フィルタをバイパスするためにLLMのパワーを損なう
- Authors: Yimo Deng, Huangxun Chen,
- Abstract要約: 我々は、最先端TTIモデルの安全フィルタを回避するために、Divide-and-Conquer Attackを導入する。
我々はLLMを効果的に誘導するアタック・ヘルパーを設計し、非倫理的な描画意図を曖昧な記述に分解する。
本研究は,手工芸法や反復的TTIモデルクエリよりも,より深刻なセキュリティ上の意味を持つ。
- 参考スコア(独自算出の注目度): 1.5408065585641535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image (TTI) models offer many innovative services but also raise ethical concerns due to their potential to generate unethical images. Most public TTI services employ safety filters to prevent unintended images. In this work, we introduce the Divide-and-Conquer Attack to circumvent the safety filters of state-of the-art TTI models, including DALL-E 3 and Midjourney. Our attack leverages LLMs as text transformation agents to create adversarial prompts. We design attack helper prompts that effectively guide LLMs to break down an unethical drawing intent into multiple benign descriptions of individual image elements, allowing them to bypass safety filters while still generating unethical images. Because the latent harmful meaning only becomes apparent when all individual elements are drawn together. Our evaluation demonstrates that our attack successfully circumvents multiple strong closed-box safety filters. The comprehensive success rate of DACA bypassing the safety filters of the state-of-the-art TTI engine DALL-E 3 is above 85%, while the success rate for bypassing Midjourney V6 exceeds 75%. Our findings have more severe security implications than methods of manual crafting or iterative TTI model querying due to lower attack barrier, enhanced interpretability , and better adaptation to defense. Our prototype is available at: https://github.com/researchcode001/Divide-and-Conquer-Attack
- Abstract(参考訳): テキスト・ツー・イメージ(TTI)モデルは、多くの革新的なサービスを提供しているが、非倫理的な画像を生成する可能性があるため、倫理的な懸念も提起している。
ほとんどの公共TTIサービスは、意図しない画像を防ぐために安全フィルタを使用している。
本研究では、DALL-E 3やMidjourneyを含む最先端TTIモデルの安全性フィルタを回避するために、Divide-and-Conquer Attackを導入する。
我々の攻撃は LLM をテキスト変換エージェントとして活用し、敵対的なプロンプトを生成する。
我々は、LLMを効果的に誘導するアタック・ヘルパーを設計し、個々の画像要素の複数の良心的な記述に分割し、非倫理的な画像を生成しながら安全フィルタをバイパスできるようにする。
なぜなら、潜在有害な意味は、全ての個々の要素が一緒に引かれるときにのみ明らかになるからである。
評価の結果,攻撃によって複数の強いクローズドボックス安全フィルタを回避できた。
最先端のTTIエンジンであるDALL-E 3の安全フィルタをバイパスするDACAの総合的な成功率は85%を超え、ミッドジャーニーV6をバイパスする成功率は75%以上である。
攻撃障壁の低下,解釈可能性の向上,防御への適応性の向上などにより,手技や反復的TTIモデルクエリよりも深刻なセキュリティ上の影響が指摘された。
私たちのプロトタイプは、https://github.com/researchcode001/Divide-and-Conquer-Attackで公開されています。
関連論文リスト
- Safe + Safe = Unsafe? Exploring How Safe Images Can Be Exploited to Jailbreak Large Vision-Language Models [80.77246856082742]
Safety Snowball Agent (SSA) は、エージェントの自律的およびツール使用能力をジェイルブレイクLVLMに活用する新しいエージェントベースのフレームワークである。
我々の実験では、ほぼすべての画像を用いてLVLMを誘導し、安全でないコンテンツを生成し、最新のLVLMに対して高いジェイルブレイク率を達成できることを示した。
論文 参考訳(メタデータ) (2024-11-18T11:58:07Z) - AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models [20.37481116837779]
AdvI2Iは、入力画像を操作して拡散モデルを誘導し、NSFWコンテンツを生成する新しいフレームワークである。
ジェネレータを最適化して敵画像を作成することで、AdvI2Iは既存の防御機構を回避できる。
本稿では,AdvI2IとAdvI2I-Adaptiveの両方が,現行の安全対策を効果的に回避可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T19:15:06Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - ImgTrojan: Jailbreaking Vision-Language Models with ONE Image [40.55590043993117]
視覚言語モデル(VLM)に対する新しいジェイルブレイク攻撃を提案する。
トレーニングデータに有毒な(画像、テキスト)データペアを含めるシナリオが想定されます。
原文のキャプションを悪意のあるジェイルブレイクプロンプトに置き換えることにより、この手法は毒画像を用いてジェイルブレイク攻撃を行うことができる。
論文 参考訳(メタデータ) (2024-03-05T12:21:57Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
オープンソースの大規模言語モデルは、有害なコンテンツを生成するために容易に変換できる。
5つの異なる組織がリリースした8つのモデルに対する実験は、シャドーアライメントアタックの有効性を実証している。
この研究は、悪意のある攻撃者に対するオープンソースのLLMの安全性を見直し、強化するための集団的な取り組みの発端となる。
論文 参考訳(メタデータ) (2023-10-04T16:39:31Z) - Certifying LLM Safety against Adversarial Prompting [75.19953634352258]
大規模言語モデル(LLM)は、入力プロンプトに悪意のあるトークンを追加する敵攻撃に対して脆弱である。
我々は,認証された安全保証とともに,敵のプロンプトを防御する最初の枠組みである消去・チェックを導入する。
論文 参考訳(メタデータ) (2023-09-06T04:37:20Z) - Image Hijacks: Adversarial Images can Control Generative Models at Runtime [8.603201325413192]
推論時に視覚言語モデルの振る舞いを制御する画像ハイジャック, 逆画像を検出する。
Prompt Matching法を考案し、任意のユーザ定義テキストプロンプトの動作にマッチしたハイジャックをトレーニングする。
我々は、Behaviour Matchingを使って、4種類の攻撃に対してハイジャックを作らせ、VLMは敵の選択の出力を生成し、コンテキストウィンドウから情報をリークし、安全トレーニングをオーバーライドし、偽の声明を信じるように強制する。
論文 参考訳(メタデータ) (2023-09-01T03:53:40Z) - Red-Teaming the Stable Diffusion Safety Filter [5.683172456953383]
安全フィルタをバイパスする乱雑なコンテンツを容易に生成できることが示される。
将来のモデルリリースの安全性対策は、完全にオープンで適切に文書化されなければならない、と私たちは主張する。
論文 参考訳(メタデータ) (2022-10-03T14:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。