論文の概要: Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training
- arxiv url: http://arxiv.org/abs/2407.09121v1
- Date: Fri, 12 Jul 2024 09:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-15 23:57:34.219740
- Title: Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training
- Title(参考訳): 安全でないときはいつでもリユースする - 分離されたリファイントレーニングによるLCMの安全性向上
- Authors: Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Jiahao Xu, Tian Liang, Pinjia He, Zhaopeng Tu,
- Abstract要約: 本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
- 参考スコア(独自算出の注目度): 67.30423823744506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs) by identifying and tackling a refusal position bias within safety tuning data, which compromises the models' ability to appropriately refuse generating unsafe content. We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position, significantly enhancing their safety capabilities. DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation (MLE) with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence. Our empirical evaluation, conducted using LLaMA3 and Mistral model families across six attack scenarios, demonstrates that our method not only improves model safety without compromising performance but also surpasses well-known models such as GPT-4 in defending against attacks. Importantly, our approach successfully defends recent advanced attack methods (e.g., CodeAttack) that have jailbroken GPT-4 and LLaMA3-70B-Instruct. Our code and data can be found at https://github.com/RobustNLP/DeRTa.
- Abstract(参考訳): 本研究では,大言語モデル(LLM)における安全チューニングの実践において,安全チューニングデータ内の拒絶位置バイアスを特定し,対処することにより,安全でないコンテンツの生成を適切に拒否するモデルの能力を損なう。
本稿では, LLM に対して, いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否し, 安全性を著しく向上させる新しいアプローチである Decoupled Refusal Training (DeRTa) を導入する。
DeRTaは,(1) 有害応答の開始に有害応答のセグメントを付加することにより,安全でないコンテンツの認識と回避をモデルに訓練する,(MLE) 有害応答列全体を通して潜在的障害から安全拒絶へ移行する能力を持つモデルを装備する強化遷移最適化(RTO) という2つの新しいコンポーネントを組み込んだ。
6つの攻撃シナリオにわたるLLaMA3およびMistralモデルファミリーを用いて実施した実証実験により,本手法は,性能を損なうことなくモデル安全性を向上するだけでなく,攻撃防御においてGPT-4などのよく知られたモデルを上回ることを実証した。
本手法は, GPT-4 と LLaMA3-70B-Instruct を併用した最近の攻撃手法 (CodeAttack など) を効果的に防御する。
コードとデータはhttps://github.com/RobustNLP/DeRTa.comで確認できます。
関連論文リスト
- Safety Pretraining: Toward the Next Generation of Safe AI [61.2816320807586]
モデルの安全性を最初から構築する,データ中心の事前トレーニングフレームワークを提案する。
i)600Bトークンをフィルタするために使用される1万GPT-4ラベルの例に基づいてトレーニングされた安全分類器,(ii)有害なWebデータのテキスト化によって生成された,これまでで最大の合成安全データセット,(iv)安全でないコンテンツのフラグ付けのために事前トレーニング中に注入されたハームフルネス・タグアノテーション。
論文 参考訳(メタデータ) (2025-04-23T17:58:08Z) - Think Before Refusal : Triggering Safety Reflection in LLMs to Mitigate False Refusal Behavior [59.20260988638777]
本研究は, 応答発生前の安全反射の促進により, 虚偽の拒絶行動が軽減されることを実証する。
15種類の事前訓練モデルを対象としたアブレーション実験において, 安全性を考慮した微調整モデルでは, 誤検知の挙動が著しく低下することがわかった。
論文 参考訳(メタデータ) (2025-03-22T23:35:49Z) - Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models [34.66687625996389]
汎用AIアシスタントの開発にはMLLM(Multimodal large language model)が不可欠である。
差別、誤報、倫理基準違反などの望ましくない行動を防止するために、MLLMが安全に整列されていることをどうやって保証できるのか。
安全性と安全性を共同で最適化する,初のマルチモーダル安全アライメントフレームワークであるSafe RLHF-Vを提案する。
論文 参考訳(メタデータ) (2025-03-22T07:40:20Z) - STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
SafeTyアライメントとItrospective Reasoningを統合したフレームワークSTAIRを提案する。
その結果,STAIRは本能的アライメント戦略と比較して,有害なアウトプットを効果的に軽減し,有用性を保っていることがわかった。
テスト時のスケーリングでは、STAIRは一般的なジェイルブレイク攻撃に対して、Claude-3.5に匹敵する安全性能を達成する。
論文 参考訳(メタデータ) (2025-02-04T15:02:55Z) - Enhancing AI Safety Through the Fusion of Low Rank Adapters [7.384556630042846]
低ランク適応核融合は、悪意のあるプロンプトに直面した場合に有害な応答を緩和する。
タスクアダプタと安全アダプタとのLoRA融合を利用して, 有害度率を42%低減した。
また、モデルが安全でないものに近い安全なプロンプトを拒否する、誇張された安全行動も観察する。
論文 参考訳(メタデータ) (2024-12-30T13:12:27Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
重大言語モデル(LLM)が悪意のある命令から脅威を守るためには、安全性の調整が不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Emerging Safety Attack and Defense in Federated Instruction Tuning of Large Language Models [51.85781332922943]
フェデレートラーニング(FL)は、複数のパーティが直接データ共有を必要とせずに、共同で大きな言語モデル(LLM)を微調整することを可能にする。
我々は、シンプルでステルス的で効果的な安全攻撃手法を提案することにより、FedITにおける安全性アライメントの脆弱性を初めて明らかにした。
論文 参考訳(メタデータ) (2024-06-15T13:24:22Z) - Uncovering Safety Risks of Large Language Models through Concept Activation Vector [13.804245297233454]
大規模言語モデル(LLM)に対する攻撃を誘導する安全概念活性化ベクトル(SCAV)フレームワークについて紹介する。
そこで我々は,攻撃プロンプトと埋め込みレベルの攻撃の両方を生成できるSCAV誘導攻撃法を開発した。
本手法は,トレーニングデータが少なくなるとともに,攻撃成功率と応答品質を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T09:46:25Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Fine-tuning Aligned Language Models Compromises Safety, Even When Users
Do Not Intend To! [88.90694413503614]
LLMの安全性は微調整によって損なわれる可能性がある。
我々は、GPT-3.5の安全ガードレールを10種類の例で微調整することで、脱獄した。
我々は、協調LLMのカスタム微調整のための安全プロトコルの強化に向けたさらなる研究を提唱する。
論文 参考訳(メタデータ) (2023-10-05T17:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。