論文の概要: Harnessing LLM to Attack LLM-Guarded Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2312.07130v4
- Date: Sat, 23 Nov 2024 03:07:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:23:51.378361
- Title: Harnessing LLM to Attack LLM-Guarded Text-to-Image Models
- Title(参考訳): LLM-Guarded Text-to-Image Model に対するハーネス化
- Authors: Yimo Deng, Huangxun Chen,
- Abstract要約: テキスト・ツー・イメージ(T2I)モデルが非倫理的な画像を生成するのを防ぐために、安全フィルタを配置して不適切な描画プロンプトをブロックする。
これまでは、これらのフィルタをバイパスするためにトークンの置換が用いられてきたが、意味のないトークンがセマンティックロジックチェックを失敗すると効果が低下した。
図面意図を良質な記述に書き換えることで,効果的な対角的プロンプトが得られることを示す。
- 参考スコア(独自算出の注目度): 1.5408065585641535
- License:
- Abstract: To prevent Text-to-Image (T2I) models from generating unethical images, people deploy safety filters to block inappropriate drawing prompts. Previous works have employed token replacement to search adversarial prompts that attempt to bypass these filters, but they have become ineffective as nonsensical tokens fail semantic logic checks. In this paper, we approach adversarial prompts from a different perspective. We demonstrate that rephrasing a drawing intent into multiple benign descriptions of individual visual components can obtain an effective adversarial prompt. We propose a LLM-piloted multi-agent method named DACA to automatically complete intended rephrasing. Our method successfully bypasses the safety filters of DALL-E 3 and Midjourney to generate the intended images, achieving success rates of up to 76.7% and 64% in the one-time attack, and 98% and 84% in the re-use attack, respectively. We open-source our code and dataset on [this link](https://github.com/researchcode003/DACA).
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)モデルが非倫理的な画像を生成するのを防ぐために、安全フィルタを配置して不適切な描画プロンプトをブロックする。
従来の研究では、これらのフィルタをバイパスしようとする敵対的プロンプトの検索にトークンの置換が用いられてきたが、意味論的トークンが意味論理チェックに失敗すると効果がなくなった。
本稿では,異なる視点から,敵対的プロンプトにアプローチする。
図面意図を個々の視覚成分の複数の良性記述に書き換えることで、効果的な対角的プロンプトが得られることを示す。
DACA と呼ばれる LLM をパイロットとしたマルチエージェント手法を提案する。
提案手法はDALL-E 3とMidjourneyの安全フィルタをバイパスして意図した画像を生成し,1回の攻撃で最大76.7%,64%,再使用攻撃で最大98%,84%を達成した。
このリンク) (https://github.com/researchcode003/DACA) でコードとデータセットをオープンソースにしています。
関連論文リスト
- PrivAgent: Agentic-based Red-teaming for LLM Privacy Leakage [78.33839735526769]
LLMは、慎重に構築された敵のプロンプトの下で私的情報を出力することに騙される可能性がある。
PrivAgentは、プライバシー漏洩のための新しいブラックボックスレッドチームフレームワークである。
論文 参考訳(メタデータ) (2024-12-07T20:09:01Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
本研究は、以前見過ごされた脆弱性を特定し、Implicit Reference (AIR) による攻撃(Attack)と呼ぶ。
AIRは悪意のある目的を許容可能な目的に分解し、コンテキスト内の暗黙の参照を通してそれらをリンクする。
我々の実験は、AIRが最先端のLLMに対して有効であることを示し、ほとんどのモデルで90%を超える攻撃成功率(ASR)を達成した。
論文 参考訳(メタデータ) (2024-10-04T18:42:57Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
大きな言語モデル(LLM)の透かしは、著作権に対処し、AI生成したテキストを監視し、その誤用を防ぐことを約束している。
近年の研究では、多数のキーを用いた透かし手法は、攻撃の除去に影響を受けやすいことが示されている。
我々は,最先端のLLM透かしスキームに対する新たなグリーンリスト盗難攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-30T04:11:17Z) - Improved Generation of Adversarial Examples Against Safety-aligned LLMs [72.38072942860309]
勾配に基づく手法を用いて生成した敵対的プロンプトは、安全対応のLDMに対して自動ジェイルブレイク攻撃を行う際、優れた性能を示す。
本稿では,この問題に対する新たな視点を探求し,トランスファーベースの攻撃にインスパイアされたイノベーションを活用することで緩和できることを示唆する。
この組み合わせによって生成されたクエリ固有逆接接尾辞の87%がLlama-2-7B-Chatを誘導し、AdvBench上のターゲット文字列と正確に一致する出力を生成することを示した。
論文 参考訳(メタデータ) (2024-05-28T06:10:12Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - PAL: Proxy-Guided Black-Box Attack on Large Language Models [55.57987172146731]
大規模言語モデル(LLM)は近年人気が高まっているが、操作時に有害なコンテンツを生成する能力を示している。
PAL(Proxy-Guided Attack on LLMs)は, ブラックボックスクエリのみの設定で, LLMに対する最初の最適化ベースの攻撃である。
GPT-3.5-Turboの攻撃成功率は84%,Llama-2-7Bの攻撃成功率は48%であった。
論文 参考訳(メタデータ) (2024-02-15T02:54:49Z) - Jailbreaker in Jail: Moving Target Defense for Large Language Models [4.426665953648274]
大規模言語モデル(LLM)は敵攻撃に対して脆弱である。
LLMは非倫理的な答えを提示することで「無害」に失敗するか、意味のある答えを拒むことで「有害」に失敗する。
有効性と無害性を両立させるため,移動目標防御(MTD)強化LLMシステムを設計した。
論文 参考訳(メタデータ) (2023-10-03T20:32:04Z) - Certifying LLM Safety against Adversarial Prompting [70.96868018621167]
大規模言語モデル(LLM)は、入力プロンプトに悪意のあるトークンを追加する敵攻撃に対して脆弱である。
我々は,認証された安全保証とともに,敵のプロンプトを防御する最初の枠組みである消去・チェックを導入する。
論文 参考訳(メタデータ) (2023-09-06T04:37:20Z) - Image Hijacks: Adversarial Images can Control Generative Models at Runtime [8.603201325413192]
推論時に視覚言語モデルの振る舞いを制御する画像ハイジャック, 逆画像を検出する。
Prompt Matching法を考案し、任意のユーザ定義テキストプロンプトの動作にマッチしたハイジャックをトレーニングする。
我々は、Behaviour Matchingを使って、4種類の攻撃に対してハイジャックを作らせ、VLMは敵の選択の出力を生成し、コンテキストウィンドウから情報をリークし、安全トレーニングをオーバーライドし、偽の声明を信じるように強制する。
論文 参考訳(メタデータ) (2023-09-01T03:53:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。