Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples
- URL: http://arxiv.org/abs/2312.07370v1
- Date: Tue, 12 Dec 2023 15:40:22 GMT
- Title: Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples
- Authors: Marwa Kechaou, Mokhtar Z. Alaya, Romain H\'erault, Gilles Gasso
- Abstract summary: We design new training objective losses for cases when labeled target data behave as source samples or as real target samples.
To support our approach, we consider a complementary method that mixes source and labeled target data, then applies the same adaptation process.
We illustrate our findings through extensive experiments on the benchmarks GTA5, SYNTHIA, and Cityscapes.
- Score: 7.199108088621308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial learning baselines for domain adaptation (DA) approaches in the
context of semantic segmentation are under explored in semi-supervised
framework. These baselines involve solely the available labeled target samples
in the supervision loss. In this work, we propose to enhance their usefulness
on both semantic segmentation and the single domain classifier neural networks.
We design new training objective losses for cases when labeled target data
behave as source samples or as real target samples. The underlying rationale is
that considering the set of labeled target samples as part of source domain
helps reducing the domain discrepancy and, hence, improves the contribution of
the adversarial loss. To support our approach, we consider a complementary
method that mixes source and labeled target data, then applies the same
adaptation process. We further propose an unsupervised selection procedure
using entropy to optimize the choice of labeled target samples for adaptation.
We illustrate our findings through extensive experiments on the benchmarks
GTA5, SYNTHIA, and Cityscapes. The empirical evaluation highlights competitive
performance of our proposed approach.
Related papers
- Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation [98.09845149258972]
We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
arXiv Detail & Related papers (2023-01-18T07:55:22Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
Training models dedicated to semantic segmentation require a large amount of pixel-wise annotated data.
Unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data.
Previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data.
We propose a new domain adaptation framework for semantic segmentation with annotated points via active selection.
arXiv Detail & Related papers (2022-06-01T01:52:28Z) - Semi-Supervised Domain Adaptation via Adaptive and Progressive Feature
Alignment [32.77436219094282]
SSDAS employs a few labeled target samples as anchors for adaptive and progressive feature alignment between labeled source samples and unlabeled target samples.
In addition, we replace the dissimilar source features by high-confidence target features continuously during the iterative training process.
Extensive experiments show the proposed SSDAS greatly outperforms a number of baselines.
arXiv Detail & Related papers (2021-06-05T09:12:50Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.