PaperQA: Retrieval-Augmented Generative Agent for Scientific Research
- URL: http://arxiv.org/abs/2312.07559v2
- Date: Thu, 14 Dec 2023 19:40:04 GMT
- Title: PaperQA: Retrieval-Augmented Generative Agent for Scientific Research
- Authors: Jakub L\'ala, Odhran O'Donoghue, Aleksandar Shtedritski, Sam Cox,
Samuel G. Rodriques, Andrew D. White
- Abstract summary: We present PaperQA, a RAG agent for answering questions over the scientific literature.
PaperQA is an agent that performs information retrieval across full-text scientific articles, assesses the relevance of sources and passages, and uses RAG to provide answers.
We also introduce LitQA, a more complex benchmark that requires retrieval and synthesis of information from full-text scientific papers across the literature.
- Score: 41.9628176602676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) generalize well across language tasks, but
suffer from hallucinations and uninterpretability, making it difficult to
assess their accuracy without ground-truth. Retrieval-Augmented Generation
(RAG) models have been proposed to reduce hallucinations and provide provenance
for how an answer was generated. Applying such models to the scientific
literature may enable large-scale, systematic processing of scientific
knowledge. We present PaperQA, a RAG agent for answering questions over the
scientific literature. PaperQA is an agent that performs information retrieval
across full-text scientific articles, assesses the relevance of sources and
passages, and uses RAG to provide answers. Viewing this agent as a question
answering model, we find it exceeds performance of existing LLMs and LLM agents
on current science QA benchmarks. To push the field closer to how humans
perform research on scientific literature, we also introduce LitQA, a more
complex benchmark that requires retrieval and synthesis of information from
full-text scientific papers across the literature. Finally, we demonstrate
PaperQA's matches expert human researchers on LitQA.
Related papers
- SciDQA: A Deep Reading Comprehension Dataset over Scientific Papers [20.273439120429025]
SciDQA is a new dataset for reading comprehension that challenges LLMs for a deep understanding of scientific articles.
Unlike other scientific QA datasets, SciDQA sources questions from peer reviews by domain experts and answers by paper authors.
Questions in SciDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials.
arXiv Detail & Related papers (2024-11-08T05:28:22Z) - RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries.
This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus.
arXiv Detail & Related papers (2024-10-18T16:11:29Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science.
Traditional methods, relying on keyword searches, often fail to uncover valuable insights not explicitly stated in article titles or keywords.
We leverage Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis.
arXiv Detail & Related papers (2024-10-08T05:13:27Z) - Language agents achieve superhuman synthesis of scientific knowledge [0.7635132958167216]
PaperQA2 is a frontier language model agent optimized for improved factuality, matches or exceeds subject matter expert performance.
PaperQA2 writes cited, Wikipedia-style summaries of scientific topics that are significantly more accurate than existing, human-written Wikipedia articles.
We apply PaperQA2 to identify contradictions within the scientific literature, an important scientific task that is challenging for humans.
arXiv Detail & Related papers (2024-09-10T16:37:58Z) - BioKGBench: A Knowledge Graph Checking Benchmark of AI Agent for Biomedical Science [43.624608816218505]
BioKGBench is an evaluation benchmark for AI-driven biomedical agents.
We first disentangle "Understanding Literature" into two atomic abilities.
We then formulate a novel agent task, dubbed KGCheck, using KGQA and domain-based Retrieval-Augmented Generation.
We collect over two thousand data for two atomic tasks and 225 high-quality annotated data for the agent task.
arXiv Detail & Related papers (2024-06-29T15:23:28Z) - SciQAG: A Framework for Auto-Generated Science Question Answering Dataset with Fine-grained Evaluation [11.129800893611646]
SciQAG is a framework for automatically generating high-quality science question-answer pairs from a large corpus of scientific literature based on large language models (LLMs)
We construct a large-scale, high-quality, open-ended science QA dataset containing 188,042 QA pairs extracted from 22,743 scientific papers across 24 scientific domains.
We also introduce SciQAG-24D, a new benchmark task designed to evaluate the science question-answering ability of LLMs.
arXiv Detail & Related papers (2024-05-16T09:42:37Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is a large language model-powered research idea writing agent.
It generates problems, methods, and experiment designs while iteratively refining them based on scientific literature.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
We use the citation graph of referential links between citing and cited papers.
We observe a sizable improvement in end-to-end information extraction over the state-of-the-art.
arXiv Detail & Related papers (2021-06-03T03:00:12Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
We redefine the task of scientific papers summarization by utilizing their citation graph.
We construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains.
Our model can achieve competitive performance when compared with the pretrained models.
arXiv Detail & Related papers (2021-04-07T11:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.