SciQAG: A Framework for Auto-Generated Science Question Answering Dataset with Fine-grained Evaluation
- URL: http://arxiv.org/abs/2405.09939v2
- Date: Wed, 10 Jul 2024 01:25:50 GMT
- Title: SciQAG: A Framework for Auto-Generated Science Question Answering Dataset with Fine-grained Evaluation
- Authors: Yuwei Wan, Yixuan Liu, Aswathy Ajith, Clara Grazian, Bram Hoex, Wenjie Zhang, Chunyu Kit, Tong Xie, Ian Foster,
- Abstract summary: SciQAG is a framework for automatically generating high-quality science question-answer pairs from a large corpus of scientific literature based on large language models (LLMs)
We construct a large-scale, high-quality, open-ended science QA dataset containing 188,042 QA pairs extracted from 22,743 scientific papers across 24 scientific domains.
We also introduce SciQAG-24D, a new benchmark task designed to evaluate the science question-answering ability of LLMs.
- Score: 11.129800893611646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SciQAG, a novel framework for automatically generating high-quality science question-answer pairs from a large corpus of scientific literature based on large language models (LLMs). SciQAG consists of a QA generator and a QA evaluator, which work together to extract diverse and research-level questions and answers from scientific papers. Utilizing this framework, we construct a large-scale, high-quality, open-ended science QA dataset containing 188,042 QA pairs extracted from 22,743 scientific papers across 24 scientific domains. We also introduce SciQAG-24D, a new benchmark task designed to evaluate the science question-answering ability of LLMs. Extensive experiments demonstrate that fine-tuning LLMs on the SciQAG dataset significantly improves their performance on both open-ended question answering and scientific tasks. To foster research and collaboration, we make the datasets, models, and evaluation codes publicly available, contributing to the advancement of science question answering and developing more interpretable and reasoning-capable AI systems.
Related papers
- SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.18330795060871]
SPIQA is a dataset specifically designed to interpret complex figures and tables within the context of scientific research articles.
We employ automatic and manual curation to create the dataset.
SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits.
arXiv Detail & Related papers (2024-07-12T16:37:59Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - SciFIBench: Benchmarking Large Multimodal Models for Scientific Figure Interpretation [50.061029816288936]
We present SciFIBench, a scientific figure interpretation benchmark.
Our main benchmark consists of a 1000-question gold set of multiple-choice questions split between two tasks across 12 categories.
The questions are curated from CS arXiv paper figures and captions, using adversarial filtering to find hard negatives and human verification for quality control.
We evaluate 26 LMMs on SciFIBench, finding it to be a challenging benchmark.
arXiv Detail & Related papers (2024-05-14T17:54:17Z) - PQA: Zero-shot Protein Question Answering for Free-form Scientific
Enquiry with Large Language Models [5.062600294117055]
We introduce the novel task of zero-shot Protein Question Answering (PQA) for free-form scientific enquiry.
Given a previously unseen protein sequence and a natural language question, the task is to deliver a scientifically accurate answer.
We contribute the first specialized dataset for PQA model training, containing 257K protein sequences annotated with 1.97M scientific question-answer pairs.
arXiv Detail & Related papers (2024-02-21T09:38:17Z) - PaperQA: Retrieval-Augmented Generative Agent for Scientific Research [41.9628176602676]
We present PaperQA, a RAG agent for answering questions over the scientific literature.
PaperQA is an agent that performs information retrieval across full-text scientific articles, assesses the relevance of sources and passages, and uses RAG to provide answers.
We also introduce LitQA, a more complex benchmark that requires retrieval and synthesis of information from full-text scientific papers across the literature.
arXiv Detail & Related papers (2023-12-08T18:50:20Z) - QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
We introduce an iterative bootstrapping framework for QA data augmentation (named QASnowball)
QASnowball can iteratively generate large-scale high-quality QA data based on a seed set of supervised examples.
We conduct experiments in the high-resource English scenario and the medium-resource Chinese scenario, and the experimental results show that the data generated by QASnowball can facilitate QA models.
arXiv Detail & Related papers (2023-09-19T05:20:36Z) - SciEval: A Multi-Level Large Language Model Evaluation Benchmark for Scientific Research [11.816426823341134]
We propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues.
Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability.
Both objective and subjective questions are included in SciEval.
arXiv Detail & Related papers (2023-08-25T03:05:33Z) - Around the GLOBE: Numerical Aggregation Question-Answering on
Heterogeneous Genealogical Knowledge Graphs with Deep Neural Networks [0.934612743192798]
We present a new end-to-end methodology for numerical aggregation QA for genealogical trees.
The proposed architecture, GLOBE, outperforms the state-of-the-art models and pipelines by achieving 87% accuracy for this task.
This study may have practical implications for genealogical information centers and museums.
arXiv Detail & Related papers (2023-07-30T12:09:00Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Retrieving and Reading: A Comprehensive Survey on Open-domain Question
Answering [62.88322725956294]
We review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques.
We introduce modern OpenQA architecture named Retriever-Reader'' and analyze the various systems that follow this architecture.
We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used.
arXiv Detail & Related papers (2021-01-04T04:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.