Astrocyte-Enabled Advancements in Spiking Neural Networks for Large
Language Modeling
- URL: http://arxiv.org/abs/2312.07625v2
- Date: Tue, 26 Dec 2023 02:54:29 GMT
- Title: Astrocyte-Enabled Advancements in Spiking Neural Networks for Large
Language Modeling
- Authors: Guobin Shen, Dongcheng Zhao, Yiting Dong, Yang Li, Jindong Li, Kang
Sun, Yi Zeng
- Abstract summary: Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional performance in tasks involving memory retention and natural language generation.
AstroSNN shows low latency, high throughput, and reduced memory usage in practical applications.
- Score: 7.863029550014263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the complex neuroarchitecture of the brain, astrocytes play crucial
roles in development, structure, and metabolism. These cells regulate neural
activity through tripartite synapses, directly impacting cognitive processes
such as learning and memory. Despite the growing recognition of astrocytes'
significance, traditional Spiking Neural Network (SNN) models remain
predominantly neuron-centric, overlooking the profound influence of astrocytes
on neural dynamics. Inspired by these biological insights, we have developed an
Astrocyte-Modulated Spiking Unit (AM-SU), an innovative framework that
integrates neuron-astrocyte interactions into the computational paradigm,
demonstrating wide applicability across various hardware platforms. Our
Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional
performance in tasks involving memory retention and natural language
generation, particularly in handling long-term dependencies and complex
linguistic structures. The design of AstroSNN not only enhances its biological
authenticity but also introduces novel computational dynamics, enabling more
effective processing of complex temporal dependencies. Furthermore, AstroSNN
shows low latency, high throughput, and reduced memory usage in practical
applications, making it highly suitable for resource-constrained environments.
By successfully integrating astrocytic dynamics into intelligent neural
networks, our work narrows the gap between biological plausibility and neural
modeling, laying the groundwork for future biologically-inspired neural
computing research that includes both neurons and astrocytes.
Related papers
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
This paper introduces a novel approach to neural network design, termed neuron programming'', to enhance a network's representation ability at the neuronal level.
Comprehensive experiments validate that neuron programming can achieve competitive performance in retinal blood segmentation.
arXiv Detail & Related papers (2024-11-17T16:03:30Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
We show the challenges faced by backpropagation-based methods in optimizing Spiking Neural Networks (SNNs) and achieve more robust optimization of heterogeneous neurons in random networks using an Evolutionary Strategy (ES)
We find that membrane time constants play a crucial role in neural heterogeneity, and their distribution is similar to that observed in biological experiments.
arXiv Detail & Related papers (2023-05-19T07:32:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
We introduce neural connectivity concepts emulating the axo-somatic and the axo-axonic synapses.
We demonstrate for the first time, that a biologically realistic implementation of a large-scale ASR model can yield competitive performance levels.
arXiv Detail & Related papers (2021-10-04T21:24:10Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.