Adaptive Phase Estimation with Squeezed Vacuum Approaching the Quantum Limit
- URL: http://arxiv.org/abs/2312.07686v2
- Date: Mon, 16 Sep 2024 22:34:18 GMT
- Title: Adaptive Phase Estimation with Squeezed Vacuum Approaching the Quantum Limit
- Authors: M. A. Rodríguez-García, F. E. Becerra,
- Abstract summary: Phase estimation plays a central role in communications, sensing, and information processing.
Quantum correlated states, such as squeezed states, enable phase estimation beyond the shot-noise limit.
Physical realizations of optimal quantum measurements for optical phase estimation with quantum-correlated states are still unknown.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phase estimation plays a central role in communications, sensing, and information processing. Quantum correlated states, such as squeezed states, enable phase estimation beyond the shot-noise limit, and in principle approach the ultimate quantum limit in precision, when paired with optimal quantum measurements. However, physical realizations of optimal quantum measurements for optical phase estimation with quantum-correlated states are still unknown. Here we address this problem by introducing an adaptive Gaussian measurement strategy for optical phase estimation with squeezed vacuum states that, by construction, approaches the quantum limit in precision. This strategy builds from a comprehensive set of locally optimal POVMs through rotations and homodyne measurements and uses the Adaptive Quantum State Estimation framework for optimizing the adaptive measurement process, which, under certain regularity conditions, guarantees asymptotic optimality for this quantum parameter estimation problem. As a result, the adaptive phase estimation strategy based on locally-optimal homodyne measurements achieves the quantum limit within the phase interval of $[0, \pi/2)$. Furthermore, we generalize this strategy by including heterodyne measurements, enabling phase estimation across the full range of phases from $[0, \pi)$, where squeezed vacuum allows for unambiguous phase encoding. Remarkably, for this phase interval, which is the maximum range of phases that can be encoded in squeezed vacuum, this estimation strategy maintains an asymptotic quantum-optimal performance, representing a significant advancement in quantum metrology.
Related papers
- Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum-enhanced mean value estimation via adaptive measurement [0.39102514525861415]
Mean value estimation of observables is an essential subroutine in quantum computing algorithms.
The quantum estimation theory identifies the ultimate precision of such an estimator, which is referred to as the quantum Cram'er-Rao (QCR) lower bound or equivalently the inverse of the quantum Fisher information.
We propose a quantum-enhanced mean value estimation method in a depolarizing noisy environment that saturates the QCR bound in the limit of a large number of qubits.
arXiv Detail & Related papers (2022-10-27T17:13:07Z) - Determination of the asymptotic limits of adaptive photon counting
measurements for coherent-state optical phase estimation [0.0]
We present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements.
We show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the limit differing only by a scaling factor.
arXiv Detail & Related papers (2022-08-14T02:47:06Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Efficient qubit phase estimation using adaptive measurements [0.0]
Estimating the quantum phase of a physical system is a central problem in quantum parameter estimation theory.
Current methods to estimate quantum phases fail to reach the quantum Cram'er-Rao bound.
We propose a new adaptive scheme based on covariant measurements to circumvent this problem.
arXiv Detail & Related papers (2020-12-21T02:43:47Z) - Quantum enhanced optical phase estimation with a squeezed thermal state [10.080495095463252]
Quantum phase estimation protocols can provide a measuring method of phase shift with precision superior to standard quantum limit.
A squeezed vacuum state has been pointed out a sensitive resource for quantum phase estimation.
arXiv Detail & Related papers (2020-04-13T09:02:48Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.