Hardware-efficient quantum phase estimation via local control
- URL: http://arxiv.org/abs/2506.18765v1
- Date: Mon, 23 Jun 2025 15:34:58 GMT
- Title: Hardware-efficient quantum phase estimation via local control
- Authors: Benjamin F. Schiffer, Dominik S. Wild, Nishad Maskara, Mikhail D. Lukin, J. Ignacio Cirac,
- Abstract summary: We present an approach to quantum phase estimation that uses only locally controlled operations.<n>At the heart of our approach are efficient routines to measure the complex phase of the expectation value of the time-evolution operator.<n>Our methods offer a practical pathway for measuring spectral properties in large many-body quantum systems using current quantum devices.
- Score: 0.2796197251957244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum phase estimation plays a central role in quantum simulation as it enables the study of spectral properties of many-body quantum systems. Most variants of the phase estimation algorithm require the application of the global unitary evolution conditioned on the state of one or more auxiliary qubits, posing a significant challenge for current quantum devices. In this work, we present an approach to quantum phase estimation that uses only locally controlled operations, resulting in a significantly reduced circuit depth. At the heart of our approach are efficient routines to measure the complex phase of the expectation value of the time-evolution operator, the so-called Loschmidt echo, for both circuit dynamics and Hamiltonian dynamics. By tracking changes in the phase during the dynamics, the routines trade circuit depth for an increased sampling cost and classical postprocessing. Our approach does not rely on reference states and is applicable to any efficiently preparable state, regardless of its correlations. We provide a comprehensive analysis of the sample complexity and illustrate the results with numerical simulations. Our methods offer a practical pathway for measuring spectral properties in large many-body quantum systems using current quantum devices.
Related papers
- Learning quantum phase transition in parametrized quantum circuits with an attention mechanism [0.18416014644193066]
Learning many-body quantum states and quantum phase transitions remains a major challenge in quantum many-body physics.<n>We propose a novel framework that bypasses the need to measure physical observables by directly learning the parameters of parameterized quantum circuits.
arXiv Detail & Related papers (2025-06-07T06:21:40Z) - Measurement-driven quantum advantages in shallow circuits [0.3683202928838613]
Quantum advantage schemes probe the boundary between classically simulatable quantum systems and those that go beyond this realm.<n>Here, we introduce a constant-depth measurement-driven approach for efficiently sampling from a broad class of dense instantaneous quantum-time circuits.
arXiv Detail & Related papers (2025-05-07T18:00:51Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.<n>We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.<n>We validated the method with numerical simulations and real-hardware experiments on Rigetti's Ankaa 9Q-1 quantum computer.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Phase-Sensitive Quantum Measurement without Controlled Operations [0.6571063542099524]
We introduce a quantum algorithm based on complex analysis that overcomes the problem for amplitudes that are a continuous function of time.
Our method only requires the implementation of real-time evolution and a shallow circuit that approximates a short imaginary-time evolution.
arXiv Detail & Related papers (2023-08-21T15:41:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.