Uncertainty Visualization via Low-Dimensional Posterior Projections
- URL: http://arxiv.org/abs/2312.07804v2
- Date: Sun, 12 May 2024 10:34:04 GMT
- Title: Uncertainty Visualization via Low-Dimensional Posterior Projections
- Authors: Omer Yair, Elias Nehme, Tomer Michaeli,
- Abstract summary: We introduce a new approach for estimating and visualizing posteriors by employing energy-based models (EBMs) over low-dimensional subspaces.
We demonstrate the effectiveness of our method across a diverse range of datasets and image restoration problems.
- Score: 23.371244861123827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In ill-posed inverse problems, it is commonly desirable to obtain insight into the full spectrum of plausible solutions, rather than extracting only a single reconstruction. Information about the plausible solutions and their likelihoods is encoded in the posterior distribution. However, for high-dimensional data, this distribution is challenging to visualize. In this work, we introduce a new approach for estimating and visualizing posteriors by employing energy-based models (EBMs) over low-dimensional subspaces. Specifically, we train a conditional EBM that receives an input measurement and a set of directions that span some low-dimensional subspace of solutions, and outputs the probability density function of the posterior within that space. We demonstrate the effectiveness of our method across a diverse range of datasets and image restoration problems, showcasing its strength in uncertainty quantification and visualization. As we show, our method outperforms a baseline that projects samples from a diffusion-based posterior sampler, while being orders of magnitude faster. Furthermore, it is more accurate than a baseline that assumes a Gaussian posterior.
Related papers
- pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization [11.393603788068777]
In ill-posed imaging inverse problems, there can exist many hypotheses that fit both the observed measurements and prior knowledge of the true image.
We propose a fast and accurate posterior-sampling conditional generative adversarial network (cGAN) that, through a novel form of regularization, aims for correctness in the posterior mean.
arXiv Detail & Related papers (2024-11-01T14:09:28Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Hierarchical Uncertainty Exploration via Feedforward Posterior Trees [25.965665666173038]
We introduce a new approach for visualizing posteriors across multiple levels of granularity using tree-valued predictions.
Our method predicts a tree-valued hierarchical summarization of the posterior distribution for any input measurement, in a single forward pass of a neural network.
arXiv Detail & Related papers (2024-05-24T17:06:51Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
We use a score-based model to encode the prior for the inference of undistorted images of background galaxies.
We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
arXiv Detail & Related papers (2022-11-07T19:00:42Z) - SNIPS: Solving Noisy Inverse Problems Stochastically [25.567566997688044]
We introduce a novel algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem.
Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE)
We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
arXiv Detail & Related papers (2021-05-31T13:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.