Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements
- URL: http://arxiv.org/abs/2411.09850v1
- Date: Fri, 15 Nov 2024 00:06:57 GMT
- Title: Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements
- Authors: Shijie Zhou, Huaisheng Zhu, Rohan Sharma, Ruiyi Zhang, Kaiyi Ji, Changyou Chen,
- Abstract summary: Diffusion models have emerged as a powerful foundation model for visual generation.
Current posterior sampling based methods take the measurement into the posterior sampling to infer the distribution of the target data.
We show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors.
We propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement.
- Score: 45.70011319850862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as a powerful foundation model for visual generation. With an appropriate sampling process, it can effectively serve as a generative prior to solve general inverse problems. Current posterior sampling based methods take the measurement (i.e., degraded image sample) into the posterior sampling to infer the distribution of the target data (i.e., clean image sample). However, in this manner, we show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors during the restoration sampling. To address this issue, we first reveal that forming the log posterior gradient with the noisy measurement ( i.e., samples from a diffusion forward process) instead of the clean one can benefit the reverse process. Consequently, we propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement (i.e., samples generated by a reverse denoising process, compared to random sampling with noise in standard methods) to form the posterior estimate. This integration aims to mitigate the misalignment with the diffusion prior caused by cumulative posterior estimate errors. Experimental results demonstrate that our approach significantly improves the overall capacity to solve general and noisy inverse problems, such as Gaussian deblurring, super-resolution, inpainting, nonlinear deblurring, and tasks with Poisson noise, relative to existing approaches.
Related papers
- A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.
Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.
This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.
generating high-quality outputs requires many discretization steps.
We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.
We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.
Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
We propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process.
DAPS significantly improves sample quality and stability across multiple image restoration tasks.
For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods.
arXiv Detail & Related papers (2024-07-01T17:59:23Z) - Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors [21.0128625037708]
We present an innovative framework, divide-and-conquer posterior sampling.
It reduces the approximation error associated with current techniques without the need for retraining.
We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems.
arXiv Detail & Related papers (2024-03-18T01:47:24Z) - Diffusion Posterior Proximal Sampling for Image Restoration [27.35952624032734]
We present a refined paradigm for diffusion-based image restoration.
Specifically, we opt for a sample consistent with the measurement identity at each generative step.
The number of candidate samples used for selection is adaptively determined based on the signal-to-noise ratio of the timestep.
arXiv Detail & Related papers (2024-02-25T04:24:28Z) - Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise [34.65659277870287]
Research on denoising diffusion models has expanded its application to the field of image restoration.
We propose Resfusion, a framework that incorporates the residual term into the diffusion forward process.
We show that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps.
arXiv Detail & Related papers (2023-11-25T02:09:38Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
We use a score-based model to encode the prior for the inference of undistorted images of background galaxies.
We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
arXiv Detail & Related papers (2022-11-07T19:00:42Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.