SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models
- URL: http://arxiv.org/abs/2312.07865v3
- Date: Thu, 30 May 2024 06:55:15 GMT
- Title: SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models
- Authors: Feifei Wang, Zhentao Tan, Tianyi Wei, Yue Wu, Qidong Huang,
- Abstract summary: We propose an adaptive greedy search for optimal time steps that seamlessly integrates with existing anti-customization methods.
Our approach significantly increases identity disruption, thereby protecting user privacy and copyright.
- Score: 16.505593270720034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of diffusion-based customization methods on visual content creation, increasing concerns have been raised about such techniques from both privacy and political perspectives. To tackle this issue, several anti-customization methods have been proposed in very recent months, predominantly grounded in adversarial attacks. Unfortunately, most of these methods adopt straightforward designs, such as end-to-end optimization with a focus on adversarially maximizing the original training loss, thereby neglecting nuanced internal properties intrinsic to the diffusion model, and even leading to ineffective optimization in some diffusion time steps.In this paper, we strive to bridge this gap by undertaking a comprehensive exploration of these inherent properties, to boost the performance of current anti-customization approaches. Two aspects of properties are investigated: 1) We examine the relationship between time step selection and the model's perception in the frequency domain of images and find that lower time steps can give much more contributions to adversarial noises. This inspires us to propose an adaptive greedy search for optimal time steps that seamlessly integrates with existing anti-customization methods. 2) We scrutinize the roles of features at different layers during denoising and devise a sophisticated feature-based optimization framework for anti-customization.Experiments on facial benchmarks demonstrate that our approach significantly increases identity disruption, thereby protecting user privacy and copyright. Our code is available at: https://github.com/somuchtome/SimAC.
Related papers
- Privacy Protection in Personalized Diffusion Models via Targeted Cross-Attention Adversarial Attack [5.357486699062561]
We propose a novel and efficient adversarial attack method, Concept Protection by Selective Attention Manipulation (CoPSAM)
For this purpose, we carefully construct an imperceptible noise to be added to clean samples to get their adversarial counterparts.
Experimental validation on a subset of CelebA-HQ face images dataset demonstrates that our approach outperforms existing methods.
arXiv Detail & Related papers (2024-11-25T14:39:18Z) - DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuard is a robust and effective defense method against unauthorized edits by diffusion-based image editing models.
We introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process.
We also introduce a mask-augmentation technique to enhance robustness against various masks during test time.
arXiv Detail & Related papers (2024-10-08T05:19:19Z) - Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models [27.83772742404565]
We introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models.
PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation.
This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability.
arXiv Detail & Related papers (2024-08-20T06:17:56Z) - TALE: Training-free Cross-domain Image Composition via Adaptive Latent Manipulation and Energy-guided Optimization [59.412236435627094]
TALE is a training-free framework harnessing the generative capabilities of text-to-image diffusion models.
We equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization.
Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition.
arXiv Detail & Related papers (2024-08-07T08:52:21Z) - DDAP: Dual-Domain Anti-Personalization against Text-to-Image Diffusion Models [18.938687631109925]
Diffusion-based personalized visual content generation technologies have achieved significant breakthroughs.
However, when misused to fabricate fake news or unsettling content targeting individuals, these technologies could cause considerable societal harm.
This paper introduces a novel Dual-Domain Anti-Personalization framework (DDAP)
By alternating between these two methods, we construct the DDAP framework, effectively harnessing the strengths of both domains.
arXiv Detail & Related papers (2024-07-29T16:11:21Z) - Disrupting Diffusion: Token-Level Attention Erasure Attack against Diffusion-based Customization [19.635385099376066]
malicious users have misused diffusion-based customization methods like DreamBooth to create fake images.
In this paper, we propose DisDiff, a novel adversarial attack method to disrupt the diffusion model outputs.
arXiv Detail & Related papers (2024-05-31T02:45:31Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Time to Focus: A Comprehensive Benchmark Using Time Series Attribution
Methods [4.9449660544238085]
The paper focuses on time series analysis and benchmark several state-of-the-art attribution methods.
The presented experiments involve gradient-based and perturbation-based attribution methods.
The findings accentuate that choosing the best-suited attribution method is strongly correlated with the desired use case.
arXiv Detail & Related papers (2022-02-08T10:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.