Rethinking Direct Preference Optimization in Diffusion Models
- URL: http://arxiv.org/abs/2505.18736v1
- Date: Sat, 24 May 2025 15:14:45 GMT
- Title: Rethinking Direct Preference Optimization in Diffusion Models
- Authors: Junyong Kang, Seohyun Lim, Kyungjune Baek, Hyunjung Shim,
- Abstract summary: We propose a novel approach to enhancing diffusion-based preference optimization.<n>First, we introduce a stable reference model update strategy that relaxes the frozen reference model, encouraging exploration.<n>Second, we present a timestep-aware training strategy that mitigates the reward scale imbalance problem across timesteps.
- Score: 15.358181258656229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning text-to-image (T2I) diffusion models with human preferences has emerged as a critical research challenge. While recent advances in this area have extended preference optimization techniques from large language models (LLMs) to the diffusion setting, they often struggle with limited exploration. In this work, we propose a novel and orthogonal approach to enhancing diffusion-based preference optimization. First, we introduce a stable reference model update strategy that relaxes the frozen reference model, encouraging exploration while maintaining a stable optimization anchor through reference model regularization. Second, we present a timestep-aware training strategy that mitigates the reward scale imbalance problem across timesteps. Our method can be integrated into various preference optimization algorithms. Experimental results show that our approach improves the performance of state-of-the-art methods on human preference evaluation benchmarks.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences [13.588231827053923]
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data.<n>We propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective.<n>Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods.
arXiv Detail & Related papers (2025-06-03T09:47:22Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
We introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models.<n>Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively.<n> Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning.
arXiv Detail & Related papers (2025-03-24T08:58:49Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.<n>Our guidance is a preference model trained to predict the probability that one design dominates another.<n>Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization [49.302188710680866]
Preference optimization for diffusion models aims to align them with human preferences for images.<n>We show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space.<n>We introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space.
arXiv Detail & Related papers (2025-02-03T04:51:28Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.<n>Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.<n>Our experiments show that the proposed approach significantly improves the average aesthetics scores text-to-image generation.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Confronting Reward Overoptimization for Diffusion Models: A Perspective of Inductive and Primacy Biases [76.9127853906115]
Bridging the gap between diffusion models and human preferences is crucial for their integration into practical generative.
We propose Temporal Diffusion Policy Optimization with critic active neuron Reset (TDPO-R), a policy gradient algorithm that exploits the temporal inductive bias of diffusion models.
Empirical results demonstrate the superior efficacy of our methods in mitigating reward overoptimization.
arXiv Detail & Related papers (2024-02-13T15:55:41Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.