論文の概要: Learn or Recall? Revisiting Incremental Learning with Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2312.07887v4
- Date: Mon, 27 May 2024 14:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 08:15:32.459786
- Title: Learn or Recall? Revisiting Incremental Learning with Pre-trained Language Models
- Title(参考訳): 学習とリコール : 事前学習型言語モデルによるインクリメンタルラーニングの再考
- Authors: Junhao Zheng, Shengjie Qiu, Qianli Ma,
- Abstract要約: 殆どの人は、破滅的な忘れが優れたIL性能を達成するための最大の障害であると仮定している。
PLMを用いたILのためのSEQ*と呼ばれるフラストレーションに簡単な手法を提案する。
その結果,SEQ* は最先端 (SOTA) IL 法と比較して,競争力や性能に優れていた。
- 参考スコア(独自算出の注目度): 21.95081572612883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incremental Learning (IL) has been a long-standing problem in both vision and Natural Language Processing (NLP) communities. In recent years, as Pre-trained Language Models (PLMs) have achieved remarkable progress in various NLP downstream tasks, utilizing PLMs as backbones has become a common practice in recent research of IL in NLP. Most assume that catastrophic forgetting is the biggest obstacle to achieving superior IL performance and propose various techniques to overcome this issue. However, we find that this assumption is problematic. Specifically, we revisit more than 20 methods on four classification tasks (Text Classification, Intent Classification, Relation Extraction, and Named Entity Recognition) under the two most popular IL settings (Class-Incremental and Task-Incremental) and reveal that most of them severely underestimate the inherent anti-forgetting ability of PLMs. Based on the observation, we propose a frustratingly easy method called SEQ* for IL with PLMs. The results show that SEQ* has competitive or superior performance compared to state-of-the-art (SOTA) IL methods and requires considerably less trainable parameters and training time. These findings urge us to revisit the IL with PLMs and encourage future studies to have a fundamental understanding of the catastrophic forgetting in PLMs. The data, code and scripts are publicly available at https://github.com/zzz47zzz/codebase-for-incremental-learning-with-llm.
- Abstract(参考訳): インクリメンタルラーニング(IL)は、ビジョンと自然言語処理(NLP)コミュニティにおいて長年の課題であった。
近年、PLM(Pre-trained Language Models)は様々なNLP下流タスクにおいて顕著な進歩を遂げており、最近のNLPにおけるIL研究において、PLMをバックボーンとして活用することが一般的となっている。
殆どの人は、破滅的な忘れが優れたIL性能を達成するための最大の障害であると仮定し、この問題を克服するための様々な手法を提案する。
しかし、この仮定は問題となる。
具体的には,4つの分類タスク(テキスト分類,インテント分類,関係抽出,名前付きエンティティ認識)について,最も一般的な2つのIL設定(クラスインクリメンタルとタスクインクリメンタル)に基づいて20以上の手法を再検討し,PLMの固有のアンチフォジット能力を著しく過小評価していることを明らかにする。
そこで本研究では,PLMを用いたILのためのSEQ*というフラストレーションに富んだ手法を提案する。
その結果,SEQ* は最新式 (SOTA) の IL 法に比べて性能が優れており,トレーニング時間やトレーニング時間もかなり少ないことがわかった。
これらの知見は, ILをPLMで再考し, 今後の研究がPLMにおける破滅的な忘れを根本的に理解することを促すものである。
データ、コード、スクリプトはhttps://github.com/zzz47zzz/codebase-for-incremental-learning-with-llm.comで公開されている。
関連論文リスト
- FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Online Cascade Learning for Efficient Inference over Streams [9.516197133796437]
大規模言語モデル(LLM)は、データストリームに関する複雑なクエリに応答する自然な役割を持つ。
この課題に対処する最初のアプローチであるオンラインカスケード学習を提案する。
我々は,オンラインでカスケードを学習するタスクを模倣学習問題として定式化する。
論文 参考訳(メタデータ) (2024-02-07T01:46:50Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [43.270424225285105]
ゼロショットと少数ショットのレコメンデーションタスクのために、純粋に大きな言語モデルを適応し、強化することに重点を置いています。
ゼロショット設定と少数ショット設定の両方でレコメンデーションタスクを行うRetrieval-enhanced Large Language Model (ReLLa)を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:25:04Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z) - On the Usage of Continual Learning for Out-of-Distribution
Generalization in Pre-trained Language Models of Code [12.708117108874083]
事前学習型言語モデル(PLM)は、コードの深層学習において一般的な技術となっている。
本稿では,APIコールとAPI利用予測という2つの下流タスクで広く利用されているPLMアーキテクチャについて検討する。
これらの課題に対処するため,リプレイベースおよび正規化ベースの手法を含む5つの連続学習手法を実装した。
論文 参考訳(メタデータ) (2023-05-06T18:00:21Z) - Prompt Tuning for Discriminative Pre-trained Language Models [96.04765512463415]
最近の研究は、自然言語処理(NLP)タスクに事前訓練言語モデル(PLM)を刺激する際の迅速なチューニングの有望な結果を示している。
ELECTRAのような差別的なPLMが、いかに効果的に迅速なチューニングが可能かは、まだ不明である。
DPTは,NLPタスクを識別言語モデリング問題に書き換える,識別型PLMの最初のプロンプトチューニングフレームワークである。
論文 参考訳(メタデータ) (2022-05-23T10:11:50Z) - Clinical Prompt Learning with Frozen Language Models [4.077071350659386]
大規模だが凍結した事前学習言語モデル (PLMs) は、より小型で微調整されたモデルよりも高速に学習できる。
臨床的に有意な意思決定課題における即時学習の実現可能性について検討した。
結果は、学習の速さと部分的に一致しており、学習の速さは従来の微調整と一致したり改善したりすることができる。
論文 参考訳(メタデータ) (2022-05-11T14:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。