DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
- URL: http://arxiv.org/abs/2312.07920v3
- Date: Wed, 20 Mar 2024 07:36:27 GMT
- Title: DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
- Authors: Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, Ming-Hsuan Yang,
- Abstract summary: We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes.
For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene.
We then leverage a composite dynamic Gaussian graph to handle multiple moving objects.
We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency.
- Score: 57.12439406121721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in dynamic driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. Our project page is at: https://github.com/VDIGPKU/DrivingGaussian.
Related papers
- EMD: Explicit Motion Modeling for High-Quality Street Gaussian Splatting [22.590036750925627]
Photorealistic reconstruction of street scenes is essential for developing real-world simulators in autonomous driving.
Recent methods based on 3D/4D Gaussian Splatting (GS) have demonstrated promising results, but they still encounter challenges in complex street scenes due to the unpredictable motion of dynamic objects.
We propose Explicit Motion Decomposition (EMD), which models the motions of dynamic objects by introducing learnable motion embeddings to the Gaussians.
arXiv Detail & Related papers (2024-11-23T15:10:04Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - OmniRe: Omni Urban Scene Reconstruction [78.99262488964423]
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs.
We propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log.
arXiv Detail & Related papers (2024-08-29T17:56:33Z) - AutoSplat: Constrained Gaussian Splatting for Autonomous Driving Scene Reconstruction [17.600027937450342]
AutoSplat is a framework employing Gaussian splatting to achieve highly realistic reconstructions of autonomous driving scenes.
Our method enables multi-view consistent simulation of challenging scenarios including lane changes.
arXiv Detail & Related papers (2024-07-02T18:36:50Z) - VDG: Vision-Only Dynamic Gaussian for Driving Simulation [112.6139608504842]
We introduce self-supervised VO into our pose-free dynamic Gaussian method (VDG)
VDG can work with only RGB image input and construct dynamic scenes at a faster speed and larger scenes compared with the pose-free dynamic view-synthesis method.
Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
arXiv Detail & Related papers (2024-06-26T09:29:21Z) - $\textit{S}^3$Gaussian: Self-Supervised Street Gaussians for Autonomous Driving [82.82048452755394]
Photorealistic 3D reconstruction of street scenes is a critical technique for developing real-world simulators for autonomous driving.
Most existing street 3DGS methods require tracked 3D vehicle bounding boxes to decompose the static and dynamic elements.
We propose a self-supervised street Gaussian ($textitS3$Gaussian) method to decompose dynamic and static elements from 4D consistency.
arXiv Detail & Related papers (2024-05-30T17:57:08Z) - Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting [32.59889755381453]
Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view of dynamic urban street scenes.
We introduce Street Gaussians, a new explicit scene representation that tackles these limitations.
The proposed method consistently outperforms state-of-the-art methods across all datasets.
arXiv Detail & Related papers (2024-01-02T18:59:55Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.