DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
- URL: http://arxiv.org/abs/2312.07920v3
- Date: Wed, 20 Mar 2024 07:36:27 GMT
- Title: DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
- Authors: Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, Ming-Hsuan Yang,
- Abstract summary: We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes.
For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene.
We then leverage a composite dynamic Gaussian graph to handle multiple moving objects.
We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency.
- Score: 57.12439406121721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in dynamic driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. Our project page is at: https://github.com/VDIGPKU/DrivingGaussian.
Related papers
- OG-Gaussian: Occupancy Based Street Gaussians for Autonomous Driving [12.47557991785691]
We propose OG-Gaussian, a novel approach that replaces LiDAR point clouds with Occupancy Grids (OGs) generated from surround-view camera images.
Our method leverages the semantic information in OGs to separate dynamic vehicles from static street background, converting these grids into two distinct sets of initial point clouds for reconstructing both static and dynamic objects.
Experiments on the Open dataset demonstrate that OG-Gaussian is on par with the current state-of-the-art in terms of reconstruction quality and rendering speed, achieving an average PSNR of 35.13 and a rendering speed of 143 FPS
arXiv Detail & Related papers (2025-02-20T04:00:47Z) - RelayGS: Reconstructing Dynamic Scenes with Large-Scale and Complex Motions via Relay Gaussians [20.103270640146]
Reconstructing dynamic scenes with large-scale and complex motions remains a significant challenge.
Recent techniques like Neural Radiance Fields and 3D Gaussian Splatting (3DGS) have shown promise but still struggle with scenes involving substantial movement.
This paper proposes RelayGS, a novel method based on 3DGS to represent and reconstruct highly dynamic scenes.
arXiv Detail & Related papers (2024-12-03T15:08:03Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - OmniRe: Omni Urban Scene Reconstruction [78.99262488964423]
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs.
We propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log.
arXiv Detail & Related papers (2024-08-29T17:56:33Z) - AutoSplat: Constrained Gaussian Splatting for Autonomous Driving Scene Reconstruction [17.600027937450342]
AutoSplat is a framework employing Gaussian splatting to achieve highly realistic reconstructions of autonomous driving scenes.
Our method enables multi-view consistent simulation of challenging scenarios including lane changes.
arXiv Detail & Related papers (2024-07-02T18:36:50Z) - VDG: Vision-Only Dynamic Gaussian for Driving Simulation [112.6139608504842]
We introduce self-supervised VO into our pose-free dynamic Gaussian method (VDG)
VDG can work with only RGB image input and construct dynamic scenes at a faster speed and larger scenes compared with the pose-free dynamic view-synthesis method.
Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.
arXiv Detail & Related papers (2024-06-26T09:29:21Z) - $\textit{S}^3$Gaussian: Self-Supervised Street Gaussians for Autonomous Driving [82.82048452755394]
Photorealistic 3D reconstruction of street scenes is a critical technique for developing real-world simulators for autonomous driving.
Most existing street 3DGS methods require tracked 3D vehicle bounding boxes to decompose the static and dynamic elements.
We propose a self-supervised street Gaussian ($textitS3$Gaussian) method to decompose dynamic and static elements from 4D consistency.
arXiv Detail & Related papers (2024-05-30T17:57:08Z) - Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting [32.59889755381453]
Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view of dynamic urban street scenes.
We introduce Street Gaussians, a new explicit scene representation that tackles these limitations.
The proposed method consistently outperforms state-of-the-art methods across all datasets.
arXiv Detail & Related papers (2024-01-02T18:59:55Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.