OG-Gaussian: Occupancy Based Street Gaussians for Autonomous Driving
- URL: http://arxiv.org/abs/2502.14235v1
- Date: Thu, 20 Feb 2025 04:00:47 GMT
- Title: OG-Gaussian: Occupancy Based Street Gaussians for Autonomous Driving
- Authors: Yedong Shen, Xinran Zhang, Yifan Duan, Shiqi Zhang, Heng Li, Yilong Wu, Jianmin Ji, Yanyong Zhang,
- Abstract summary: We propose OG-Gaussian, a novel approach that replaces LiDAR point clouds with Occupancy Grids (OGs) generated from surround-view camera images.
Our method leverages the semantic information in OGs to separate dynamic vehicles from static street background, converting these grids into two distinct sets of initial point clouds for reconstructing both static and dynamic objects.
Experiments on the Open dataset demonstrate that OG-Gaussian is on par with the current state-of-the-art in terms of reconstruction quality and rendering speed, achieving an average PSNR of 35.13 and a rendering speed of 143 FPS
- Score: 12.47557991785691
- License:
- Abstract: Accurate and realistic 3D scene reconstruction enables the lifelike creation of autonomous driving simulation environments. With advancements in 3D Gaussian Splatting (3DGS), previous studies have applied it to reconstruct complex dynamic driving scenes. These methods typically require expensive LiDAR sensors and pre-annotated datasets of dynamic objects. To address these challenges, we propose OG-Gaussian, a novel approach that replaces LiDAR point clouds with Occupancy Grids (OGs) generated from surround-view camera images using Occupancy Prediction Network (ONet). Our method leverages the semantic information in OGs to separate dynamic vehicles from static street background, converting these grids into two distinct sets of initial point clouds for reconstructing both static and dynamic objects. Additionally, we estimate the trajectories and poses of dynamic objects through a learning-based approach, eliminating the need for complex manual annotations. Experiments on Waymo Open dataset demonstrate that OG-Gaussian is on par with the current state-of-the-art in terms of reconstruction quality and rendering speed, achieving an average PSNR of 35.13 and a rendering speed of 143 FPS, while significantly reducing computational costs and economic overhead.
Related papers
- Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4D is a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation.
Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians.
Experiments on real-world datasets demonstrate that Urban4D achieves comparable or better quality than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - $\textit{S}^3$Gaussian: Self-Supervised Street Gaussians for Autonomous Driving [82.82048452755394]
Photorealistic 3D reconstruction of street scenes is a critical technique for developing real-world simulators for autonomous driving.
Most existing street 3DGS methods require tracked 3D vehicle bounding boxes to decompose the static and dynamic elements.
We propose a self-supervised street Gaussian ($textitS3$Gaussian) method to decompose dynamic and static elements from 4D consistency.
arXiv Detail & Related papers (2024-05-30T17:57:08Z) - Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting [32.59889755381453]
Recent methods extend NeRF by incorporating tracked vehicle poses to animate vehicles, enabling photo-realistic view of dynamic urban street scenes.
We introduce Street Gaussians, a new explicit scene representation that tackles these limitations.
The proposed method consistently outperforms state-of-the-art methods across all datasets.
arXiv Detail & Related papers (2024-01-02T18:59:55Z) - DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes [57.12439406121721]
We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes.
For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene.
We then leverage a composite dynamic Gaussian graph to handle multiple moving objects.
We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency.
arXiv Detail & Related papers (2023-12-13T06:30:51Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
We propose to recover the shape and motion of pedestrians from sensor readings captured in the wild by a self-driving car driving around.
We incorporate the reconstructed pedestrian assets bank in a realistic 3D simulation system.
We show that the simulated LiDAR data can be used to significantly reduce the amount of real-world data required for visual perception tasks.
arXiv Detail & Related papers (2020-11-16T17:16:32Z) - Any Motion Detector: Learning Class-agnostic Scene Dynamics from a
Sequence of LiDAR Point Clouds [4.640835690336654]
We propose a novel real-time approach of temporal context aggregation for motion detection and motion parameters estimation.
We introduce an ego-motion compensation layer to achieve real-time inference with performance comparable to a naive odometric transform of the original point cloud sequence.
arXiv Detail & Related papers (2020-04-24T10:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.