Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus
- URL: http://arxiv.org/abs/2312.07947v2
- Date: Sun, 14 Jul 2024 08:20:50 GMT
- Title: Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus
- Authors: Qiongxiu Li, Jaron Skovsted Gundersen, Milan Lopuhaa-Zwakenberg, Richard Heusdens,
- Abstract summary: We propose a general approach named adaptive differentially quantized subspace (ADQSP)
We show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances.
Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees.
- Score: 6.364764301218972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-preserving distributed average consensus has received significant attention recently due to its wide applicability. Based on the achieved performances, existing approaches can be broadly classified into perfect accuracy-prioritized approaches such as secure multiparty computation (SMPC), and worst-case privacy-prioritized approaches such as differential privacy (DP). Methods of the first class achieve perfect output accuracy but reveal some private information, while methods from the second class provide privacy against the strongest adversary at the cost of a loss of accuracy. In this paper, we propose a general approach named adaptive differentially quantized subspace perturbation (ADQSP) which combines quantization schemes with so-called subspace perturbation. Although not relying on cryptographic primitives, the proposed approach enjoys the benefits of both accuracy-prioritized and privacy-prioritized methods and is able to unify them. More specifically, we show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances. Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees. In addition to a comprehensive theoretical analysis, numerical validations are conducted to substantiate our results.
Related papers
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Noise Variance Optimization in Differential Privacy: A Game-Theoretic Approach Through Per-Instance Differential Privacy [7.264378254137811]
Differential privacy (DP) can measure privacy loss by observing the changes in the distribution caused by the inclusion of individuals in the target dataset.
DP has been prominent in safeguarding datasets in machine learning in industry giants like Apple and Google.
We propose per-instance DP (pDP) as a constraint, measuring privacy loss for each data instance and optimizing noise tailored to individual instances.
arXiv Detail & Related papers (2024-04-24T06:51:16Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Bounded and Unbiased Composite Differential Privacy [25.427802467876248]
The objective of differential privacy (DP) is to protect privacy by producing an output distribution that is indistinguishable between two neighboring databases.
Existing solutions attempt to address this issue by employing post-processing or truncation techniques.
We propose a novel differentially private mechanism which uses a composite probability density function to generate bounded and unbiased outputs.
arXiv Detail & Related papers (2023-11-04T04:43:47Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Quantization enabled Privacy Protection in Decentralized Stochastic
Optimization [34.24521534464185]
Decentralized optimization can be used in areas as diverse as machine learning, control, and sensor networks.
Privacy protection has emerged as a crucial need in the implementation of decentralized optimization.
We propose an algorithm that is able to guarantee provable convergence accuracy even in the presence of aggressive quantization errors.
arXiv Detail & Related papers (2022-08-07T15:17:23Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Optimum Noise Mechanism for Differentially Private Queries in Discrete Finite Sets [3.5379819043314176]
We introduce a novel framework for designing an optimal noise Mass Probability Function tailored to discrete and finite query sets.
Our framework seeks to optimize the noise distribution under an arbitrary $(epsilon, delta)$ constraint, thereby enhancing the accuracy and utility of the response.
Numerical experiments highlight the superior performance of our proposed optimal mechanisms compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-11-23T05:24:34Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
We study the problem of differentially private (DP) matrix completion under user-level privacy.
We design a joint differentially private variant of the popular Alternating-Least-Squares (ALS) method.
arXiv Detail & Related papers (2021-07-20T23:19:11Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.