論文の概要: Zero-Knowledge Proof of Traffic: A Deterministic and Privacy-Preserving Cross Verification Mechanism for Cooperative Perception Data
- arxiv url: http://arxiv.org/abs/2312.07948v1
- Date: Wed, 13 Dec 2023 07:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 12:26:52.770780
- Title: Zero-Knowledge Proof of Traffic: A Deterministic and Privacy-Preserving Cross Verification Mechanism for Cooperative Perception Data
- Title(参考訳): 交通のゼロ知識証明:協調知覚データに対する決定論的かつプライバシー保護的相互検証機構
- Authors: Ye Tao, Ehsan Javanmardi, Pengfei Lin, Jin Nakazato, Yuze Jiang, Manabu Tsukada, Hiroshi Esaki,
- Abstract要約: 本研究では、ゼロ知識の証明(zk-PoT)と呼ばれる新しい手法を提案する。
同じ車両に関する複数の独立した証明は、基底的真理、確率的、あるいは確率的評価に頼らずに、どの受信機でも決定論的に相互検証することができる。
提案手法は、ETSI(European Telecommunications Standards Institute)やISO(International Organization for Standardization)ITS(International Organization for Standardization)など、既存の業務に組み込むことができる。
- 参考スコア(独自算出の注目度): 7.919995199824006
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cooperative perception is crucial for connected automated vehicles in intelligent transportation systems (ITSs); however, ensuring the authenticity of perception data remains a challenge as the vehicles cannot verify events that they do not witness independently. Various studies have been conducted on establishing the authenticity of data, such as trust-based statistical methods and plausibility-based methods. However, these methods are limited as they require prior knowledge such as previous sender behaviors or predefined rules to evaluate the authenticity. To overcome this limitation, this study proposes a novel approach called zero-knowledge Proof of Traffic (zk-PoT), which involves generating cryptographic proofs to the traffic observations. Multiple independent proofs regarding the same vehicle can be deterministically cross-verified by any receivers without relying on ground truth, probabilistic, or plausibility evaluations. Additionally, no private information is compromised during the entire procedure. A full on-board unit software stack that reflects the behavior of zk-PoT is implemented within a specifically designed simulator called Flowsim. A comprehensive experimental analysis is then conducted using synthesized city-scale simulations, which demonstrates that zk-PoT's cross-verification ratio ranges between 80 % to 96 %, and 80 % of the verification is achieved in 2 s, with a protocol overhead of approximately 25 %. Furthermore, the analyses of various attacks indicate that most of the attacks could be prevented, and some, such as collusion attacks, can be mitigated. The proposed approach can be incorporated into existing works, including the European Telecommunications Standards Institute (ETSI) and the International Organization for Standardization (ISO) ITS standards, without disrupting the backward compatibility.
- Abstract(参考訳): インテリジェントトランスポートシステム(ITS)におけるコラボレーティブな自動走行車にとって、協調的な認識は重要であるが、車両が独立して目撃しない事象を検証できないため、認識データの信頼性を保証することは依然として困難である。
信頼に基づく統計手法や妥当性に基づく手法など、データの信頼性を確立するための様々な研究がなされている。
しかし、これらの手法は、過去の送信者行動や、認証を評価するための事前定義されたルールなどの事前知識を必要とするため、制限されている。
この制限を克服するために,ゼロ知識交通証明 (zk-PoT) と呼ばれる新しい手法を提案する。
同じ車両に関する複数の独立した証明は、基底的真理、確率的、あるいは確率的評価に頼らずに、どの受信機でも決定論的に相互検証することができる。
さらに、手順全体を通して個人情報が侵害されることはない。
zk-PoTの振る舞いを反映した完全な単体ソフトウェアスタックは、Flowsimと呼ばれる特別に設計されたシミュレータで実装されている。
その結果,zk-PoTの相互検証比率は80~96%であり,その80%は2秒で達成され,プロトコルオーバーヘッドは約25パーセントであることがわかった。
さらに, 様々な攻撃の分析から, 攻撃の大部分を防止でき, 共謀攻撃など一部の攻撃を軽減できることが示された。
提案手法は,欧州電気通信規格研究所 (ETSI) や国際標準化機構 (ISO) ITS など,後方互換性を損なうことなく既存の業務に組み込むことができる。
関連論文リスト
- Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication [4.575903181579272]
協調認識に基づく異常検出フレームワーク(CPAD)を提案する。
CPADは堅牢なアーキテクチャであり、通信の中断下でも有効である。
実験の結果,本手法はAUCのF1スコアにおける標準異常分類法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-28T22:41:06Z) - Distribution-Free Calibration of Statistical Confidence Sets [2.283561089098417]
本研究では,TRUSTとTRUST++という2つの新しい手法を導入する。
我々は,本手法が既存のアプローチ,特に小サンプル方式よりも優れていることを実証した。
論文 参考訳(メタデータ) (2024-11-28T20:45:59Z) - Cyber Attacks Prevention Towards Prosumer-based EV Charging Stations: An Edge-assisted Federated Prototype Knowledge Distillation Approach [25.244719630000407]
本稿では,1)ネットワークトラフィック(NT)データに対するサイバーアタック検出と,2)サイバーアタック介入の2つの側面について述べる。
本稿では,各クライアントを専用ローカルエッジサーバ(DLES)上に配置するエッジ支援型プロトタイプ知識蒸留(E-FPKD)手法を提案する。
実験分析により、提案したE-FPKDは、NSL-KDD、UNSW-NB15、IoTID20データセット上で最大のODCを達成可能であることが示された。
論文 参考訳(メタデータ) (2024-10-17T06:31:55Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
機械学習の安全性クリティカルな応用においては、モデルが保守的であることが望ましいことが多い。
本研究では,不確実性データセットに対する信頼性を最小化するデータ駆動信頼性最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:05:36Z) - Untargeted Near-collision Attacks on Biometrics: Real-world Bounds and
Theoretical Limits [0.0]
オンラインとオフラインの両方、そして識別モードと検証モードの両方で実行できる未ターゲティングな攻撃に焦点を当てます。
我々は、これらのシステムのセキュリティに対処するために、False Match Rate(FMR)とFalse Positive Identification Rate(FPIR)を用いる。
この距離空間とシステムパラメータの研究は、標的外攻撃の複雑さと近接衝突の確率を与える。
論文 参考訳(メタデータ) (2023-04-04T07:17:31Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
我々はリレーショナルアクションベース(RAB)の一般的な枠組みを紹介する。
RABは両方の制限を解除することで既存のモデルを一般化する。
データ対応ビジネスプロセスのベンチマークにおいて、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-08-12T17:03:50Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。