Variational data encoding and correlations in quantum-enhanced machine
learning
- URL: http://arxiv.org/abs/2312.07949v1
- Date: Wed, 13 Dec 2023 07:55:57 GMT
- Title: Variational data encoding and correlations in quantum-enhanced machine
learning
- Authors: Ming-Hao Wang and Hua Lu
- Abstract summary: We develop an effective encoding protocol for translating classical data into quantum states.
We also address the need to counteract the inevitable noise that can hinder quantum acceleration.
By adapting the learning concept from machine learning, we render data encoding a learnable process.
- Score: 2.436161840735876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging the extraordinary phenomena of quantum superposition and quantum
correlation, quantum computing offers unprecedented potential for addressing
challenges beyond the reach of classical computers. This paper tackles two
pivotal challenges in the realm of quantum computing: firstly, the development
of an effective encoding protocol for translating classical data into quantum
states, a critical step for any quantum computation. Different encoding
strategies can significantly influence quantum computer performance. Secondly,
we address the need to counteract the inevitable noise that can hinder quantum
acceleration. Our primary contribution is the introduction of a novel
variational data encoding method, grounded in quantum regression algorithm
models. By adapting the learning concept from machine learning, we render data
encoding a learnable process. Through numerical simulations of various
regression tasks, we demonstrate the efficacy of our variational data encoding,
particularly post-learning from instructional data. Moreover, we delve into the
role of quantum correlation in enhancing task performance, especially in noisy
environments. Our findings underscore the critical role of quantum correlation
in not only bolstering performance but also in mitigating noise interference,
thus advancing the frontier of quantum computing.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Stabilization and Dissipative Information Transfer of a Superconducting
Kerr-Cat Qubit [0.0]
We study the dissipative information transfer to a qubit model called Cat-Qubit.
This model is especially important for the dissipative-based version of the binary quantum classification.
Cat-Qubit architecture has the potential to easily implement activation-like functions in artificial neural networks.
arXiv Detail & Related papers (2023-07-23T11:28:52Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.