Stabilization and Dissipative Information Transfer of a Superconducting
Kerr-Cat Qubit
- URL: http://arxiv.org/abs/2307.12298v1
- Date: Sun, 23 Jul 2023 11:28:52 GMT
- Title: Stabilization and Dissipative Information Transfer of a Superconducting
Kerr-Cat Qubit
- Authors: Ufuk Korkmaz, Deniz T\"urkpen\c{c}e
- Abstract summary: We study the dissipative information transfer to a qubit model called Cat-Qubit.
This model is especially important for the dissipative-based version of the binary quantum classification.
Cat-Qubit architecture has the potential to easily implement activation-like functions in artificial neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, the competition to build a quantum computer continues, and the number
of qubits in hardware is increasing rapidly. However, the quantum noise that
comes with this process reduces the performance of algorithmic applications, so
alternative ways in quantum computer architecture and implementation of
algorithms are discussed on the one hand. One of these alternative ways is the
hybridization of the circuit-based quantum computing model with the
dissipative-based computing model. Here, the goal is to apply the part of the
algorithm that provides the quantum advantage with the quantum circuit model,
and the remaining part with the dissipative model, which is less affected by
noise. This scheme is of importance to quantum machine learning algorithms that
involve highly repetitive processes and are thus susceptible to noise. In this
study, we examine dissipative information transfer to a qubit model called
Cat-Qubit. This model is especially important for the dissipative-based version
of the binary quantum classification, which is the basic processing unit of
quantum machine learning algorithms. On the other hand, Cat-Qubit architecture,
which has the potential to easily implement activation-like functions in
artificial neural networks due to its rich physics, also offers an alternative
hardware opportunity for quantum artificial neural networks. Numerical
calculations exhibit successful transfer of quantum information from reservoir
qubits by a repeated-interactions-based dissipative scheme.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions [0.5249805590164901]
We numerically simulate the noisy hybrid quantum generative adversarial networks (HQGANs) to learn continuous probability distributions.
We also investigate the effect of different parameters on the training time to reduce the computational scaling of the algorithm.
Our results pave the way for experimental exploration of different quantum machine learning algorithms on noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2020-06-02T23:14:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.