論文の概要: ASLseg: Adapting SAM in the Loop for Semi-supervised Liver Tumor
Segmentation
- arxiv url: http://arxiv.org/abs/2312.07969v1
- Date: Wed, 13 Dec 2023 08:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 16:10:13.137850
- Title: ASLseg: Adapting SAM in the Loop for Semi-supervised Liver Tumor
Segmentation
- Title(参考訳): ASLseg:半監督肝腫瘍分節に対するSAMのループへの適応
- Authors: Shiyun Chen, Li Lin, Pujin Cheng, Xiaoying Tang
- Abstract要約: 肝腫瘍の分節化は, コンピュータ診断, 手術計画, 予後評価に必須である。
セミ・スーパーバイザード・ラーニング(SSL)はこれらの課題に対処するための一般的なテクニックである。
我々は、SAMをSSL設定に効果的に適応できる新しい半教師付きフレームワーク ASLseg を提案する。
- 参考スコア(独自算出の注目度): 2.58000193754246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Liver tumor segmentation is essential for computer-aided diagnosis, surgical
planning, and prognosis evaluation. However, obtaining and maintaining a
large-scale dataset with dense annotations is challenging. Semi-Supervised
Learning (SSL) is a common technique to address these challenges. Recently,
Segment Anything Model (SAM) has shown promising performance in some medical
image segmentation tasks, but it performs poorly for liver tumor segmentation.
In this paper, we propose a novel semi-supervised framework, named ASLseg,
which can effectively adapt the SAM to the SSL setting and combine both
domain-specific and general knowledge of liver tumors. Specifically, the
segmentation model trained with a specific SSL paradigm provides the generated
pseudo-labels as prompts to the fine-tuned SAM. An adaptation network is then
used to refine the SAM-predictions and generate higher-quality pseudo-labels.
Finally, the reliable pseudo-labels are selected to expand the labeled set for
iterative training. Extensive experiments on the LiTS dataset demonstrate
overwhelming performance of our ASLseg.
- Abstract(参考訳): 肝腫瘍の分節化は, コンピュータ診断, 手術計画, 予後評価に必須である。
しかし、高密度アノテーションによる大規模データセットの取得と維持は困難である。
半監督学習(SSL)はこれらの課題に対処するための一般的なテクニックである。
近年,Segment Anything Model (SAM) は,いくつかの画像分割作業において有望な性能を示したが,肝腫瘍のセグメンテーションでは不十分であった。
本稿では,新しい半教師付きフレームワークであるASLsegを提案する。これはSAMをSSL設定に効果的に適応し,肝腫瘍のドメイン固有知識と一般知識を組み合わせることができる。
具体的には、特定のSSLパラダイムでトレーニングされたセグメンテーションモデルは、微調整されたSAMへのプロンプトとして生成された擬似ラベルを提供する。
次に適応ネットワークを用いてSAM予測を洗練し、高品質な擬似ラベルを生成する。
最後に、信頼性の高い擬似ラベルを選択してラベル付きセットを拡張して反復トレーニングを行う。
LiTSデータセットの大規模な実験は、当社のASLセグの圧倒的な性能を示している。
関連論文リスト
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
がんなどの疾患の病理診断は、従来、医師や病理医による形態学的特徴の評価に頼っていた。
近年,診断支援ツールとしてコンピュータ支援診断(CAD)システムの進歩が注目されている。
本稿では,クラスアクティベーションマップとSAMに基づく擬似ラベルを組み合わせ,弱教師付きセマンティックセマンティックセグメンテーション(WSSS)モデルを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:55:09Z) - SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
自動結節分割は超音波画像におけるコンピュータ支援診断に不可欠である。
近年、SAMのようなセグメンテーション基礎モデルは、自然画像に顕著な一般化性を示している。
本研究では, セグメンテーション基盤モデルを利用して擬似ラベルを生成する, 弱教師付きフレームワークを考案する。
論文 参考訳(メタデータ) (2024-07-18T14:27:54Z) - Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation [44.54301473673582]
半教師付き学習(SSL)は,医用画像のセグメンテーションにおいて顕著な進歩を遂げている。
SAM(Segment Anything Model)のような視覚基盤モデルの最近の発展は、顕著な適応性を示している。
半教師型医用画像分割のためのセグメンテーションモデル(CPC-SAM)を用いたクロスプロンプト整合性手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:43:20Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation [87.17768598044427]
従来の半教師付き学習は、ラベル付きデータとラベルなしデータの特徴分布が一貫したものであると仮定する。
本稿では,ラベル付きおよびラベルなしデータの分散によるSSL性能向上のための汎用フレームワークであるセルフ・スーパービジョン・フィーチャー・アダプテーション(SSFA)を提案する。
提案するSSFAは擬似ラベルベースのSSL学習者に適用可能であり,ラベル付き,ラベルなし,さらには目に見えない分布における性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-31T03:13:45Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAMはオープン・ボキャブラリ・パノプティ・セグメンテーション・モデルであり、Segment Anything Model(SAM)の強みを、エンドツーエンドのフレームワークで視覚ネイティブのCLIPモデルと統合する。
本稿では,マスクの質を適応的に向上し,各画像の推論中にオープン語彙分類の性能を高めるマスク対応選択組立アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-14T17:55:03Z) - Self-Supervised Multiple Instance Learning for Acute Myeloid Leukemia Classification [1.1874560263468232]
急性骨髄性白血病(AML)のような疾患は、単細胞レベルでのアノテーションが不足し、コストがかかるため困難である。
マルチインスタンス学習(MIL)は、弱いラベル付きシナリオに対処するが、ラベル付きデータで訓練された強力なエンコーダを必要とする。
本研究では,MILをベースとしたサブタイプAML分類のための事前学習手法として,自己監督学習(SSL)について検討する。
論文 参考訳(メタデータ) (2024-03-08T15:16:15Z) - Self-supervised TransUNet for Ultrasound regional segmentation of the
distal radius in children [0.6291443816903801]
TransUNetのSSL(SSL-MAE)用のMasked Autoencoderは、子供の手首超音波スキャンからボニー領域を分割する。
本稿では,TransUNet の SSL (SSL-MAE) 用 Masked Autoencoder を小児手首超音波スキャンからボニー領域に分割する可能性について検討した。
論文 参考訳(メタデータ) (2023-09-18T05:23:33Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
そこで本研究では,SAMの知識と外科的特異的情報を統合し,汎用性を向上させるための,新しいエンドツーエンドの効率的なチューニング手法であるScientialSAMを紹介した。
具体的には,タイピングのための軽量なプロトタイプベースクラスプロンプトエンコーダを提案し,クラスプロトタイプから直接プロンプト埋め込みを生成する。
また,手術器具カテゴリー間のクラス間差異の低さに対応するために,コントラッシブなプロトタイプ学習を提案する。
論文 参考訳(メタデータ) (2023-08-17T02:51:01Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
病理検体の全スライディング画像(WSI)における癌領域のアノテーションは、臨床診断、生医学研究、機械学習アルゴリズムの開発において重要な役割を担っている。
本稿では,外部トレーニングデータを必要とせず,単一のWSI上で粗いアノテーションを洗練するためのLC-MIL (Label Cleaning Multiple Instance Learning) を提案する。
乳癌リンパ節転移,肝癌,大腸癌の検体を併用した異種 WSI 実験の結果,LC-MIL は粗いアノテーションを著しく改善し,単一スライドから学習しながらも,最先端の代替品よりも優れていた。
論文 参考訳(メタデータ) (2021-09-22T15:06:06Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。