論文の概要: Fine-Grained Image-Text Alignment in Medical Imaging Enables Cyclic
Image-Report Generation
- arxiv url: http://arxiv.org/abs/2312.08078v4
- Date: Wed, 27 Dec 2023 07:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 21:22:47.385140
- Title: Fine-Grained Image-Text Alignment in Medical Imaging Enables Cyclic
Image-Report Generation
- Title(参考訳): 医用画像における細粒度画像-テキストアライメントによる周期的画像レポート生成
- Authors: Wenting Chen, Linlin Shen, Xiang Li, Yixuan Yuan
- Abstract要約: 本稿では,胸部X線画像領域と医療報告における単語を関連付けるために,適応パッチワードマッチング(AdaMatch)モデルを提案する。
AdaMatchは、適応パッチと単語のきめ細かい関係を利用して、対応する単語で特定の画像領域の説明を提供する。
CXRレポート生成タスクの明示的な説明性を提供するため,循環型CXRレポート生成のためのAdaMatchベースの双方向大言語モデルを提案する。
- 参考スコア(独自算出の注目度): 61.644324011145585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address these issues, we propose a novel Adaptive patch-word Matching
(AdaMatch) model to correlate chest X-ray (CXR) image regions with words in
medical reports and apply it to CXR-report generation to provide explainability
for the generation process. AdaMatch exploits the fine-grained relation between
adaptive patches and words to provide explanations of specific image regions
with corresponding words. To capture the abnormal regions of varying sizes and
positions, we introduce the Adaptive Patch extraction (AdaPatch) module to
acquire the adaptive patches for these regions adaptively. In order to provide
explicit explainability for CXR-report generation task, we propose an
AdaMatch-based bidirectional large language model for Cyclic CXR-report
generation (AdaMatch-Cyclic). It employs the AdaMatch to obtain the keywords
for CXR images and `keypatches' for medical reports as hints to guide
CXR-report generation. Extensive experiments on two publicly available CXR
datasets prove the effectiveness of our method and its superior performance to
existing methods.
- Abstract(参考訳): 本稿では,胸部x線(cxr)画像領域を医療報告書中の単語に関連付ける適応パッチワードマッチング(adamatch)モデルを提案し,それをcxrレポート生成に適用し,生成過程の説明可能性を提供する。
AdaMatchは、適応パッチと単語のきめ細かい関係を利用して、対応する単語で特定の画像領域の説明を提供する。
異なるサイズと位置の異常領域をキャプチャするために、適応パッチ抽出(adapatch)モジュールを導入し、これらの領域に対する適応パッチを適応的に取得する。
本稿では,CXR-Report生成タスクの明示的な説明性を提供するために,CXR-Report生成のためのAdaMatchベースの双方向大言語モデルを提案する。
adamatchを使用して、cxrイメージのキーワードを取得し、医療レポートの‘keypatches’を、cxrレポート生成のヒントとして使用する。
利用可能な2つのCXRデータセットに対する大規模な実験により,提案手法の有効性と既存手法よりも優れた性能が証明された。
関連論文リスト
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - MedCycle: Unpaired Medical Report Generation via Cycle-Consistency [11.190146577567548]
一貫性のあるラベリングスキーマを必要としない革新的なアプローチを導入する。
このアプローチは、画像埋め込みをレポート埋め込みに変換するサイクル一貫性マッピング関数に基づいている。
胸部X線所見の発生は、最先端の結果よりも優れており、言語と臨床の両方の指標の改善が示されている。
論文 参考訳(メタデータ) (2024-03-20T09:40:11Z) - Sentence-level Prompts Benefit Composed Image Retrieval [69.78119883060006]
合成画像検索(CIR)は、参照画像と相対キャプションの両方を含むクエリを用いて、特定の画像を検索するタスクである。
本稿では,事前訓練されたV-Lモデル,例えばBLIP-2を用いて文レベルのプロンプトを生成することを提案する。
提案手法は,Fashion-IQおよびCIRRデータセット上の最先端のCIR手法に対して良好に動作する。
論文 参考訳(メタデータ) (2023-10-09T07:31:44Z) - Finding-Aware Anatomical Tokens for Chest X-Ray Automated Reporting [13.151444796296868]
本稿では,解剖学的構造定位時に抽出した候補境界ボックスの検出を行う,Faster R-CNNの新たな適応法を提案する。
得られたバウンディングボックスの特徴表現を解剖学的トークンの発見セットとして使用します。
タスク対応の解剖学的トークンは、自動レポートパイプラインに統合された場合、最先端のパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2023-08-30T11:35:21Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Multimodal Image-Text Matching Improves Retrieval-based Chest X-Ray
Report Generation [3.6664023341224827]
X-REM (Contrastive X-Ray Report Match) は、X-REM (X-REM) という新しい検索方式の放射線学レポート生成モジュールである。
X-REMは、胸部X線画像の類似度を測定するための画像テキストマッチングスコアと、レポート検索のための放射線診断レポートを使用する。
論文 参考訳(メタデータ) (2023-03-29T04:00:47Z) - Improving Joint Learning of Chest X-Ray and Radiology Report by Word
Region Alignment [9.265044250068554]
本稿では,胸部X線画像の事前学習のためのJoImTeRNet(JoImTeRNet)を提案する。
このモデルは、視覚的テキストマッチングのためのグローバル画像文レベルとローカル画像領域語レベルの両方で事前訓練された。
論文 参考訳(メタデータ) (2021-09-04T22:58:35Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
ほとんどの場合、正常領域が胸部X線像全体を支配し、これらの正常領域の対応する記述が最終報告を支配している。
本稿では,現在の入力画像と通常の画像を比較してコントラスト情報を抽出するContrastive Attention(CA)モデルを提案する。
2つの公開データセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2021-06-13T11:20:31Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。