論文の概要: An Incentive Mechanism for Federated Learning Based on Multiple Resource
Exchange
- arxiv url: http://arxiv.org/abs/2312.08096v1
- Date: Wed, 13 Dec 2023 12:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 15:20:39.620936
- Title: An Incentive Mechanism for Federated Learning Based on Multiple Resource
Exchange
- Title(参考訳): 複数資源交換に基づく連合学習のインセンティブ機構
- Authors: Ruonan Dong, Hui Xu, Han Zhang, GuoPeng Zhang
- Abstract要約: Federated Learning(FL)は、機械学習におけるプライバシー問題に対処する分散機械学習パラダイムである。
ユーザをモデルオーナ(MO)とデータオーナ(DO)の2つの役割に分類する。
提案した協調計算フレームワークは、FLタスクの完了までの全体の時間を最小化しつつ、95%以上の精度を達成可能であることを示す。
- 参考スコア(独自算出の注目度): 5.385462087305977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed machine learning paradigm that
addresses privacy concerns in machine learning and still guarantees high test
accuracy. However, achieving the necessary accuracy by having all clients
participate in FL is impractical, given the constraints of client local
computing resource. In this paper, we introduce a multi-user collaborative
computing framework, categorizing users into two roles: model owners (MOs) and
data owner (DOs). Without resorting to monetary incentives, an MO can encourage
more DOs to join in FL by allowing the DOs to offload extra local computing
tasks to the MO for execution. This exchange of "data" for "computing
resources" streamlines the incentives for clients to engage more effectively in
FL. We formulate the interaction between MO and DOs as an optimization problem,
and the objective is to effectively utilize the communication and computing
resource of the MO and DOs to minimize the time to complete an FL task. The
proposed problem is a mixed integer nonlinear programming (MINLP) with high
computational complexity. We first decompose it into two distinct subproblems,
namely the client selection problem and the resource allocation problem to
segregate the integer variables from the continuous variables. Then, an
effective iterative algorithm is proposed to solve problem. Simulation results
demonstrate that the proposed collaborative computing framework can achieve an
accuracy of more than 95\% while minimizing the overall time to complete an FL
task.
- Abstract(参考訳): Federated Learning(FL)は、マシンラーニングにおけるプライバシの問題に対処し、高いテスト精度を保証する分散機械学習パラダイムである。
しかし、クライアントローカルコンピューティングリソースの制約を考えると、すべてのクライアントがFLに参加することで必要な精度を達成することは現実的ではない。
本稿では,ユーザをモデルオーナ(MO)とデータオーナ(DO)の2つの役割に分類する,マルチユーザ協調コンピューティングフレームワークを提案する。
金銭的なインセンティブを使わずに、dosが余分なローカルコンピューティングタスクをmoにオフロードすることで、より多くのdosがflに参加することを奨励することができる。
この「データ」と「計算資源」の交換は、クライアントがより効率的にflに関与するためのインセンティブを合理化する。
最適化問題としてMOとDOの相互作用を定式化し,その目的は,MOとDOの通信・計算資源を有効活用し,FLタスクの完了までの時間を最小化することである。
提案する問題は、計算複雑性の高い混合整数非線形プログラミング(MINLP)である。
まず、これをクライアント選択問題とリソース割り当て問題という2つの異なるサブプロブレムに分解し、連続変数から整数変数を分離する。
そこで,問題を解くために効率的な反復アルゴリズムを提案する。
シミュレーションの結果,提案する協調計算フレームワークは,flタスクの完了までの全体の時間を最小にしつつ,95\%以上の精度を達成できることがわかった。
関連論文リスト
- A Framework for testing Federated Learning algorithms using an edge-like environment [0.0]
フェデレーテッド・ラーニング(FL)は、多くのクライアントが、データをプライベートかつ分散化しながら、単一の集中型モデルを協調的にトレーニングする機械学習パラダイムである。
グローバル集中型モデルアグリゲーションにおける局所モデルの貢献を正確に評価するのは簡単ではない。
これはFLにおける大きな挑戦の例であり、一般にデータ不均衡またはクラス不均衡として知られている。
本研究では,FLアルゴリズムをより容易かつスケーラブルに評価するためのフレームワークを提案し,実装した。
論文 参考訳(メタデータ) (2024-07-17T19:52:53Z) - Fair Concurrent Training of Multiple Models in Federated Learning [32.74516106486226]
フェデレートラーニング(FL)は、複数のクライアント間で協調学習を可能にする。
近年のFLアプリケーションは、複数のFLタスクを同時にトレーニングする必要がある。
現在のMMFLアルゴリズムは、単純平均ベースのクライアントタスク割り当てスキームを使用している。
本稿では,各トレーニングラウンドにおけるタスクに動的にクライアントを割り当てる難易度認識アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-22T02:41:10Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Joint Age-based Client Selection and Resource Allocation for
Communication-Efficient Federated Learning over NOMA Networks [8.030674576024952]
FL(Federated Learning)では、分散クライアントは、自身のトレーニングデータをローカルに保持しながら、共有グローバルモデルを共同でトレーニングすることができる。
本稿では,非直交多重アクセス(NOMA)を利用した無線ネットワーク上でのFLにおける各ラウンドの総時間消費を最小化することを目的とした,クライアント選択とリソース割り当ての協調最適化問題を定式化する。
さらに、各ラウンドで選択されていないクライアントのFLモデルを予測し、FL性能をさらに向上するために、サーバサイド人工知能ニューラルネットワーク(ANN)を提案する。
論文 参考訳(メタデータ) (2023-04-18T13:58:16Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。