Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms
- URL: http://arxiv.org/abs/2312.08105v2
- Date: Thu, 26 Sep 2024 09:02:53 GMT
- Title: Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms
- Authors: Rui Mao, Guojing Tian, Xiaoming Sun,
- Abstract summary: In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers.
However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem.
This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue.
- Score: 10.386753939552872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers. However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem. This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue. Here we provide theoretical evidence indicating they may not. By examining alternated dUCC ans\"atze and relaxed Trotterized UCC ans\"atze, we find that in the infinite depth limit, a separation occurs between particle-hole one- and two-body unitary operators. While one-body terms yield a polynomially concentrated energy landscape, adding two-body terms leads to exponential concentration. Numerical simulations support these findings, suggesting that popular 1-step Trotterized unitary coupled-cluster with singles and doubles (UCCSD) ans\"atze may not scale. Our results emphasize the link between trainability and circuit expressiveness, raising doubts about VQEs' ability to surpass classical methods.
Related papers
- Entanglement scaling and criticality of quantum many-body systems in canonical quantization picture using tensor network [0.0]
This work investigates the quantum entanglement and criticality of the ground-state wave-functions of infinitely-many coupled quantum oscillators (iCQOs)
By extending the imaginary-time evolution algorithm with translationally-invariant functional tensor network, we simulate the ground state of iCQOs with the presence of two- and three-body couplings.
We reveal the logarithmic scaling law of entanglement entropy (EE) and the scaling law of correlation length against the virtual bond $chi$ at the dividing point of physical and non-physical regions.
arXiv Detail & Related papers (2024-10-31T04:20:49Z) - On the feasibility of performing quantum chemistry calculations on quantum computers [0.0]
We propose two criteria for evaluating two leading quantum approaches for finding the ground state of molecules.
The first criterion applies to the variational quantum eigensolver (VQE) algorithm.
The second criterion applies to the quantum phase estimation (QPE) algorithm.
arXiv Detail & Related papers (2023-06-05T06:41:22Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Variational quantum algorithms for local Hamiltonian problems [0.0]
Variational quantum algorithms (VQAs) are a modern family of quantum algorithms designed to solve optimization problems using a quantum computer.
We primarily focus on the algorithm called variational quantum eigensolver (VQE), which takes a qubit Hamiltonian and returns its approximate ground state.
arXiv Detail & Related papers (2022-08-23T22:32:56Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Equivalence of quantum barren plateaus to cost concentration and narrow
gorges [0.0]
optimizing quantum circuits (PQCs) is the leading approach to make use of near-term quantum computers.
We investigate the connection between three different landscape features that have been observed for PQCs.
arXiv Detail & Related papers (2021-04-12T23:52:16Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.