論文の概要: MToP: A MATLAB Optimization Platform for Evolutionary Multitasking
- arxiv url: http://arxiv.org/abs/2312.08134v1
- Date: Wed, 13 Dec 2023 13:36:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 15:23:51.470499
- Title: MToP: A MATLAB Optimization Platform for Evolutionary Multitasking
- Title(参考訳): MToP: 進化的マルチタスクのためのMATLAB最適化プラットフォーム
- Authors: Yanchi Li, Wenyin Gong, Fei Ming, Tingyu Zhang, Shuijia Li, Qiong Gu
- Abstract要約: 進化的マルチタスク(EMT)のためのMTO-Platform(MTOP)という,オープンソースの初の最適化プラットフォームを紹介する。
30以上のMTEA、150以上のMTO問題、10以上のパフォーマンスメトリクスが組み込まれている。
MToPはグラフィカルなユーザインターフェースを備えたユーザフレンドリーなツールで、結果を分析し、データをエクスポートし、スキーマをプロットする。
- 参考スコア(独自算出の注目度): 9.017736137562116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary multitasking (EMT) has been attracting much attention over the
past years. It aims to handle multiple optimization tasks simultaneously within
limited computing resources assisted by inter-task knowledge transfer
techniques. Numerous multitask evolutionary algorithms (MTEAs) for solving
multitask optimization (MTO) problems have been proposed in the EMT field, but
there lacks a comprehensive software platform to help researchers evaluate MTEA
performance on benchmark MTO problems as well as explore real-world
applications. To address this issue, we introduce the first open-source
optimization platform, named MTO-Platform (MToP), for EMT. It incorporates more
than 30 MTEAs, more than 150 MTO problem cases with real-world applications,
and more than 10 performance metrics. Moreover, for comparing MTEAs with
traditional evolutionary algorithms, we modified more than 30 popular
single-task evolutionary algorithms to be able to solve MTO problems in MToP.
MToP is a user-friendly tool with a graphical user interface that makes it easy
to analyze results, export data, and plot schematics. More importantly, MToP is
extensible, allowing users to develop new algorithms and define new problems.
The source code of MToP is available at https://github.com/intLyc/MTO-Platform.
- Abstract(参考訳): 進化的マルチタスキング(EMT)はここ数年で注目されている。
タスク間知識伝達技術によって支援される限られたコンピューティングリソース内で、複数の最適化タスクを同時に処理することを目的としている。
マルチタスク最適化(MTO)問題を解くためのMTEA(Multipletask Evolution Algorithm)がEMTの分野で提案されているが、研究者がベンチマークMTOでMTEAのパフォーマンスを評価するための包括的なソフトウェアプラットフォームが欠如している。
この問題に対処するため,EMT 向けに MTO-Platform (MTOP) というオープンソースの最適化プラットフォームを導入する。
30以上のmtea、実世界のアプリケーションで150以上のmto問題、および10以上のパフォーマンスメトリクスを組み込んでいる。
さらに、MTEAを従来の進化アルゴリズムと比較するために、MTOPのMTO問題を解決するために、30以上の人気のあるシングルタスク進化アルゴリズムを変更した。
MToPはグラフィカルなユーザインターフェースを備えたユーザフレンドリーなツールで、結果を分析し、データをエクスポートし、スキーマをプロットする。
さらに重要なのは、MToPは拡張可能で、ユーザーは新しいアルゴリズムを開発し、新しい問題を定義することができる。
MToPのソースコードはhttps://github.com/intLyc/MTO-Platformで入手できる。
関連論文リスト
- AtomThink: A Slow Thinking Framework for Multimodal Mathematical Reasoning [70.95645743670062]
AtomThinkは、長い思考の連鎖(CoT)をステップバイステップで構築するフレームワークであり、複雑な推論を行うためのMLLMを導く。
AtomMATHは、長いCoTの大規模マルチモーダルデータセットであり、数学的タスクの原子能力評価指標である。
AtomThinkはベースラインMLLMの性能を大幅に改善し、MathVistaでは50%、MathVerseでは120%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-11-18T11:54:58Z) - MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning [50.45558735526665]
具体的タスクプランニングにおけるMFMの性能について,より深く,包括的に評価する。
我々は,その複雑で可変なタスクシナリオを特徴付けるMFE-ETPという新しいベンチマークを提案する。
ベンチマークと評価プラットフォームを用いて、いくつかの最先端のMFMを評価し、それらが人間レベルの性能に著しく遅れていることを発見した。
論文 参考訳(メタデータ) (2024-07-06T11:07:18Z) - Learning to Transfer for Evolutionary Multitasking [30.01466615418299]
進化的マルチタスク(EMT)は、マルチタスク最適化問題(MTOP)を解決するための新しいアプローチである。
暗黙のEMTにおける現在のアプローチは、限られた数の進化演算子を使用するため、適応性の課題に直面している。
本稿では,MTOPの効率的なKTポリシーを自動検出する新しいLearning to Transfer(L2T)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T14:31:24Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
本稿では,高次元特徴選択問題,すなわちMO-FSEMTのための新しいEMTフレームワークを開発する。
タスク固有の知識伝達機構は、各タスクの利点情報を活用するように設計され、高品質なソリューションの発見と効果的な伝達を可能にする。
論文 参考訳(メタデータ) (2024-01-03T06:34:39Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
本稿では,MTLを多段最適化問題として定式化し,各タスクから協調的なアプローチで特徴を学習させることを提案する。
具体的には、他のタスクの学習したサブモデルを利用する代わりに、各タスクのサブモデルを更新する。
最適化時の負の伝達問題を緩和するため、現在の目的関数に対する平坦な最小値を求める。
論文 参考訳(メタデータ) (2023-09-21T14:00:11Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
マルチタスク数学問題の解法を専門とする統一中国語 PLM である textbfJiuZhang2.0 を提案する。
我々の考えは、中規模のモデルを維持し、マルチタスク設定におけるモデル容量を改善するために、Emphcross-taskの知識共有を利用することである。
論文 参考訳(メタデータ) (2023-06-19T15:45:36Z) - Reinforcement Learning in the Wild with Maximum Likelihood-based Model
Transfer [5.92353064090273]
マルコフ決定過程 (MDP) モデルを未知の, 類似のMDPで効率的に学習し, 計画する問題について検討する。
離散的かつ連続的な設定で MTRL 問題に対処する汎用二段階アルゴリズム MLEMTRL を提案する。
我々は,MLEMTRLがスクラッチから学習するよりも新しいMDPの学習を高速化し,ほぼ最適性能を実現することを実証的に実証した。
論文 参考訳(メタデータ) (2023-02-18T09:47:34Z) - Do Current Multi-Task Optimization Methods in Deep Learning Even Help? [35.27168056803643]
これらのアルゴリズムの設計と計算の複雑さが加わったにも拘わらず、MTO法は従来の最適化手法によって達成可能な以上の性能改善を行なわないことを示す。
パフォーマンスプロファイルを継続的に改善する代替戦略を強調し、最適な結果をもたらす可能性のある一般的なトレーニング落とし穴を指摘する。
論文 参考訳(メタデータ) (2022-09-23T02:45:13Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。