論文の概要: Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
- arxiv url: http://arxiv.org/abs/2209.11379v1
- Date: Fri, 23 Sep 2022 02:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 13:34:14.219563
- Title: Do Current Multi-Task Optimization Methods in Deep Learning Even Help?
- Title(参考訳): 深層学習における最新のマルチタスク最適化手法は役に立つか?
- Authors: Derrick Xin, Behrooz Ghorbani, Ankush Garg, Orhan Firat, Justin Gilmer
- Abstract要約: これらのアルゴリズムの設計と計算の複雑さが加わったにも拘わらず、MTO法は従来の最適化手法によって達成可能な以上の性能改善を行なわないことを示す。
パフォーマンスプロファイルを継続的に改善する代替戦略を強調し、最適な結果をもたらす可能性のある一般的なトレーニング落とし穴を指摘する。
- 参考スコア(独自算出の注目度): 35.27168056803643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has proposed a series of specialized optimization algorithms
for deep multi-task models. It is often claimed that these multi-task
optimization (MTO) methods yield solutions that are superior to the ones found
by simply optimizing a weighted average of the task losses. In this paper, we
perform large-scale experiments on a variety of language and vision tasks to
examine the empirical validity of these claims. We show that, despite the added
design and computational complexity of these algorithms, MTO methods do not
yield any performance improvements beyond what is achievable via traditional
optimization approaches. We highlight alternative strategies that consistently
yield improvements to the performance profile and point out common training
pitfalls that might cause suboptimal results. Finally, we outline challenges in
reliably evaluating the performance of MTO algorithms and discuss potential
solutions.
- Abstract(参考訳): 近年,深層マルチタスクモデルのための最適化アルゴリズムが提案されている。
これらのマルチタスク最適化(MTO)手法は、単にタスク損失の重み付け平均を最適化することによって得られる手法よりも優れたソリューションをもたらすとしばしば主張される。
本稿では,様々な言語と視覚タスクに関する大規模実験を行い,これらのクレームの実証的妥当性について検討する。
これらのアルゴリズムの設計と計算の複雑さが増しても、mto法は従来の最適化アプローチで達成できる以上の性能改善は得られていない。
パフォーマンスプロファイルを継続的に改善する代替戦略を強調し、最適な結果をもたらす可能性のある一般的なトレーニング落とし穴を指摘する。
最後に,MTOアルゴリズムの性能を確実に評価する上での課題について概説する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems [4.023511716339818]
マルチオブジェクト最適化(MOO)技術は近年ますます人気が高まっている。
本稿では,最近開発されたMOOアルゴリズムについて検討する。
実世界のケーススタディでは、MOOアルゴリズムは複雑な意思決定課題に対処する。
論文 参考訳(メタデータ) (2024-06-29T15:19:46Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
本稿では,エントロピーに基づく新しい強化学習手法を提案する。
さらに、我々は、期待したリターンを最大化する、政治以外の強化学習手法を設計する。
我々のモデルは様々な経路問題に一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-05-31T09:51:48Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。