論文の概要: Differential Privacy Preserving Quantum Computing via Projection
Operator Measurements
- arxiv url: http://arxiv.org/abs/2312.08210v1
- Date: Wed, 13 Dec 2023 15:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 15:00:30.690172
- Title: Differential Privacy Preserving Quantum Computing via Projection
Operator Measurements
- Title(参考訳): プロジェクション演算子測定による量子コンピューティングの差分プライバシー保護
- Authors: Yuqing Li, Yusheng Zhao, Xinyue Zhang, Hui Zhong, Miao Pan, Chi Zhang
- Abstract要約: 古典コンピューティングでは、プライバシ保護の標準を満たすために、差分プライバシ(DP)の概念を組み込むことができる。
量子コンピューティングのシナリオでは、研究者は量子ノイズを考慮して古典DPを量子微分プライバシー(QDP)に拡張した。
ショットノイズは、量子コンピューティングにおいて、効果的にプライバシ保護を提供することを示す。
- 参考スコア(独自算出の注目度): 15.91986982307978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has been widely applied in various fields, such as quantum
physics simulations, quantum machine learning, and big data analysis. However,
in the domains of data-driven paradigm, how to ensure the privacy of the
database is becoming a vital problem. For classical computing, we can
incorporate the concept of differential privacy (DP) to meet the standard of
privacy preservation by manually adding the noise. In the quantum computing
scenario, researchers have extended classic DP to quantum differential privacy
(QDP) by considering the quantum noise. In this paper, we propose a novel
approach to satisfy the QDP definition by considering the errors generated by
the projection operator measurement, which is denoted as shot noises. Then, we
discuss the amount of privacy budget that can be achieved with shot noises,
which serves as a metric for the level of privacy protection. Furthermore, we
provide the QDP of shot noise in quantum circuits with depolarizing noise.
Through numerical simulations, we show that shot noise can effectively provide
privacy protection in quantum computing.
- Abstract(参考訳): 量子コンピューティングは、量子物理学のシミュレーション、量子機械学習、ビッグデータ分析など、様々な分野に広く適用されている。
しかし、データ駆動パラダイムの領域では、データベースのプライバシを確保する方法が重要な問題になっている。
古典コンピューティングでは、ノイズを手動で追加することで、プライバシー保護の標準を満たすために差分プライバシー(DP)の概念を組み込むことができる。
量子コンピューティングのシナリオでは、研究者は量子ノイズを考慮して古典DPを量子微分プライバシー(QDP)に拡張した。
本稿では,プロジェクション演算子測定によって発生する誤差をショットノイズとして考慮し,QDP定義を満たす新しい手法を提案する。
次に、ショットノイズで達成できるプライバシー予算の量について議論し、プライバシー保護のレベルを測る指標となる。
さらに、分極雑音を伴う量子回路におけるショットノイズのQDPを提供する。
数値シミュレーションにより,量子コンピューティングにおいてショットノイズが効果的にプライバシー保護を提供できることを示す。
関連論文リスト
- Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy [15.024190374248088]
微分プライバシー(DP)は量子領域、すなわち量子微分プライバシー(QDP)に拡張されている。
QDPは、プライバシ保護量子コンピューティングに対する最も有望なアプローチの1つになるかもしれない。
本稿では,QDPの各種実装とその性能を,DP設定下でのプライバシパラメータの観点から概説する。
論文 参考訳(メタデータ) (2024-03-14T08:40:30Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Tuning Quantum Computing Privacy through Quantum Error Correction [12.475140331375666]
本稿では,量子コンピューティングの誤差を低減するために,量子エラー補正技術を活用することを提案する。
量子コンピューティングにおけるプライバシ保護の度合いを規定する手段として,QECが有効な方法であることを示す。
論文 参考訳(メタデータ) (2023-12-22T08:35:23Z) - Harnessing Inherent Noises for Privacy Preservation in Quantum Machine
Learning [11.45148186874482]
我々は,量子機械学習におけるデータプライバシ保護に固有の量子ノイズを活用することを提案する。
特に、ノイズ中規模量子(NISQ)デバイスを考えると、避けられないショットノイズと非コヒーレントノイズを利用する。
論文 参考訳(メタデータ) (2023-12-18T11:52:44Z) - A unifying framework for differentially private quantum algorithms [0.0]
本稿では、近隣の量子状態の新規で一般的な定義を提案する。
この定義が量子符号化の基盤となる構造を捉えることを実証する。
また、入力状態のコピーを複数用意した代替設定についても検討する。
論文 参考訳(メタデータ) (2023-07-10T17:44:03Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Differential Privacy Amplification in Quantum and Quantum-inspired
Algorithms [0.6827423171182154]
量子および量子に着想を得たアルゴリズムに対するプライバシー境界の増幅を提供する。
古典的なデータセットの量子符号化で実行されるアルゴリズムは、差分プライバシーを増幅する。
論文 参考訳(メタデータ) (2022-03-07T18:55:20Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。