論文の概要: Inferring Atmospheric Properties of Exoplanets with Flow Matching and
Neural Importance Sampling
- arxiv url: http://arxiv.org/abs/2312.08295v1
- Date: Wed, 13 Dec 2023 17:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 14:35:12.167172
- Title: Inferring Atmospheric Properties of Exoplanets with Flow Matching and
Neural Importance Sampling
- Title(参考訳): フローマッチングとニューラルインパタンスサンプリングによる太陽系外惑星の大気特性の推定
- Authors: Timothy D. Gebhard and Jonas Wildberger and Maximilian Dax and Daniel
Angerhausen and Sascha P. Quanz and Bernhard Sch\"olkopf
- Abstract要約: 大気の探査は、観測された光スペクトルから大気パラメータを推定することで外惑星を特徴づける。
ネストサンプリングのような従来の手法は計算コストが高く、機械学習(ML)に基づくソリューションへの関心を喚起する。
まず、新しいMLベースのAR手法として、フローマッチング後推定(FMPE)について検討し、その場合、神経後推定(NPE)よりも正確であることを示す。
次に、FMPEとNPEを併用して重要サンプリングを行い、どちらの手法も精度とシミュレーション効率においてネストサンプリングに優れることを示した。
- 参考スコア(独自算出の注目度): 10.847353970405285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atmospheric retrievals (AR) characterize exoplanets by estimating atmospheric
parameters from observed light spectra, typically by framing the task as a
Bayesian inference problem. However, traditional approaches such as nested
sampling are computationally expensive, thus sparking an interest in solutions
based on machine learning (ML). In this ongoing work, we first explore flow
matching posterior estimation (FMPE) as a new ML-based method for AR and find
that, in our case, it is more accurate than neural posterior estimation (NPE),
but less accurate than nested sampling. We then combine both FMPE and NPE with
importance sampling, in which case both methods outperform nested sampling in
terms of accuracy and simulation efficiency. Going forward, our analysis
suggests that simulation-based inference with likelihood-based importance
sampling provides a framework for accurate and efficient AR that may become a
valuable tool not only for the analysis of observational data from existing
telescopes, but also for the development of new missions and instruments.
- Abstract(参考訳): 大気探査(AR)は、観測された光スペクトルから大気パラメータを推定することで外惑星を特徴づける。
しかし、ネストサンプリングのような従来の手法は計算コストがかかるため、機械学習(ML)に基づくソリューションへの関心が高まっている。
本研究は,まず,ニューラル・後方推定(npe)よりも精度が高いが,ネストサンプリングよりも精度が低いことを明らかにするために,新しい機械学習に基づくar法として,フローマッチング後方推定(fmpe)について検討した。
次に,fmpe と npe の双方を重要サンプリングと組み合わせ,その手法がネストサンプリングよりも精度とシミュレーション効率で優れていることを示す。
分析の結果,シミュレーションに基づく重要度推定は,既存の望遠鏡からの観測データの解析だけでなく,新たなミッションや機器の開発にも有用であると考えられる,正確かつ効率的なARのためのフレームワークを提供する可能性が示唆された。
関連論文リスト
- Flow Matching for Atmospheric Retrieval of Exoplanets: Where Reliability meets Adaptive Noise Levels [38.84835238599221]
流れマッチング後推定(FMPE)は大気圏探索のための新しい機械学習手法である。
FMPEは神経後部推定(NPE)の約3倍の速度でトレーニングし、IS効率を高める。
ISは不正確なML結果の修正に成功し、低効率でモデルの失敗を特定し、ベイズ証拠の正確な見積もりを提供する。
論文 参考訳(メタデータ) (2024-10-28T19:28:07Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
APOGEEサーベイのためのANPEモデルをトレーニングし、モックスペクトルと実恒星スペクトルの両方で有効性を示す。
スペクトルデータに固有の計測ノイズ特性を効果的に処理する手法を提案する。
我々はANPEの「モデル動物園」の有用性について論じる。そこでは、モデルは特定の楽器のために訓練され、nbiフレームワークの下で配布される。
論文 参考訳(メタデータ) (2023-12-09T21:30:07Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - Spatially-resolved Thermometry from Line-of-Sight Emission Spectroscopy
via Machine Learning [2.449329947677678]
本研究の目的は, 温度分布測定におけるデータ駆動モデルの利用について検討することである。
i)特徴工学と古典的機械学習アルゴリズム、(ii)エンドツーエンド畳み込みニューラルネットワーク(CNN)の2つのカテゴリが分析されている。
本手法は, ガス混合ガス中の種濃度分布が未知であっても, 低分解能スペクトルから不均一な温度分布を測定することができる。
論文 参考訳(メタデータ) (2022-12-15T13:46:15Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
本稿では,一連の関連するデータセットから帰納バイアスを抽出する手法を提案する。
機能的ベイズニューラルネットワーク推論を用いて、前者をプロセスとみなし、関数空間で推論を行う。
本手法は,データ生成プロセスのスコア関数をメタラーニングすることにより,複雑な事前知識をシームレスに獲得し,表現することができる。
論文 参考訳(メタデータ) (2022-10-24T15:14:26Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Probabilistic Mass Mapping with Neural Score Estimation [4.079848600120986]
弱レンズ質量マッピング問題の高次元ベイズ後方の効率的なサンプリング法を提案する。
本手法の精度をシミュレーションで実証し,HST/ACS COSMOSフィールドの大量再構成に適用する。
論文 参考訳(メタデータ) (2022-01-14T17:07:48Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor
Analysis [0.0]
探索項目因子分析(IFA)のための深層学習に基づくVIアルゴリズムについて検討する。
提案手法は、探索型IFAのための重要重み付きオートエンコーダ(IWAE)と呼ばれる深層人工ニューラルネットワークモデルを適用する。
IWAEは標本サイズやIWサンプル数の増加に伴って,より正確な推定値が得られることを示す。
論文 参考訳(メタデータ) (2020-01-22T03:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。