Concatenating quantum error-correcting codes with decoherence-free subspaces and vice versa
- URL: http://arxiv.org/abs/2312.08322v2
- Date: Mon, 1 Jul 2024 14:29:13 GMT
- Title: Concatenating quantum error-correcting codes with decoherence-free subspaces and vice versa
- Authors: Nihar Ranjan Dash, Sanjoy Dutta, R. Srikanth, Subhashish Banerjee,
- Abstract summary: Quantum error-correcting codes (QECCs) and decoherence-free subspace (DFS) codes provide active and passive means to address certain types of errors.
The concatenation of a QECC and a DFS code results in a degenerate code that splits into actively and passively correcting parts.
We show that for sufficiently strongly correlated errors, the concatenation with the DFS as the inner code provides better entanglement fidelity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error-correcting codes (QECCs) and decoherence-free subspace (DFS) codes provide active and passive means, respectively, to address certain types of errors that arise during quantum computation. The latter technique is suitable to correct correlated errors with certain symmetries and the former to correct independent errors. The concatenation of a QECC and a DFS code results in a degenerate code that splits into actively and passively correcting parts, with the degeneracy impacting either part, leading to degenerate errors as well as degenerate stabilizer operators. The concatenation of the two types of code can aid universal fault-tolerant quantum computation when a mix of correlated and independent errors is encountered. In particular, we show that for sufficiently strongly correlated errors, the concatenation with the DFS as the inner code provides better entanglement fidelity, whereas for sufficiently independent errors, the concatenation with the QECC as the inner code is preferable. As illustrative examples, we examine in detail the concatenation of a two-qubit DFS code and a three-qubit repetition code or five-qubit Knill-Laflamme code, under independent and correlated errors.
Related papers
- Degenerate quantum erasure decoding [7.6119527195998025]
We show how to achieve near-capacity performance with explicit codes and efficient decoders.
We furthermore explore the potential of our decoders to handle other error models, such as mixed erasure and depolarizing errors.
arXiv Detail & Related papers (2024-11-20T18:02:05Z) - Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Correcting phenomenological quantum noise via belief propagation [7.469588051458094]
Quantum stabilizer codes often face the challenge of syndrome errors due to error-prone measurements.
In this paper, we consider phenomenological decoding problems, where data qubit errors may occur between two syndrome extractions.
We propose a method to construct effective redundant stabilizer checks for single-shot error correction.
arXiv Detail & Related papers (2023-10-19T12:23:05Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Optimizing Stabilizer Parities for Improved Logical Qubit Memories [0.8431877864777444]
We study variants of Shor's code that are adept at handling single-axis correlated idling errors.
Even-distance versions of our Shor code variants are decoherence-free subspaces and fully robust to identical and independent coherent idling noise.
arXiv Detail & Related papers (2021-05-11T14:20:15Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Avoiding coherent errors with rotated concatenated stabilizer codes [6.85316573653194]
We integrate stabilizer codes with constant-excitation codes by code concatenation.
We analyze this code's potential as a quantum memory.
arXiv Detail & Related papers (2020-10-01T16:39:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.