Degenerate quantum erasure decoding
- URL: http://arxiv.org/abs/2411.13509v1
- Date: Wed, 20 Nov 2024 18:02:05 GMT
- Title: Degenerate quantum erasure decoding
- Authors: Kao-Yueh Kuo, Yingkai Ouyang,
- Abstract summary: We show how to achieve near-capacity performance with explicit codes and efficient decoders.
We furthermore explore the potential of our decoders to handle other error models, such as mixed erasure and depolarizing errors.
- Score: 7.6119527195998025
- License:
- Abstract: Erasures are the primary type of errors in physical systems dominated by leakage errors. While quantum error correction (QEC) using stabilizer codes can combat these error, the question of achieving near-capacity performance with explicit codes and efficient decoders remains a challenge. Quantum decoding is a classical computational problem that decides what the recovery operation should be based on the measured syndromes. For QEC, using an accurate decoder with the shortest possible runtime will minimize the degradation of quantum information while awaiting the decoder's decision. We examine the quantum erasure decoding problem for general stabilizer codes and present decoders that not only run in linear-time but are also accurate. We achieve this by exploiting the symmetry of degenerate errors. Numerical evaluations show near maximum-likelihood decoding for various codes, achieving capacity performance with topological codes and near-capacity performance with non-topological codes. We furthermore explore the potential of our decoders to handle other error models, such as mixed erasure and depolarizing errors, and also local deletion errors via concatenation with permutation invariant codes.
Related papers
- Breadth-first graph traversal union-find decoder [0.0]
We develop variants of the union-find decoder that simplify its implementation and provide potential decoding speed advantages.
We show how these methods can be adapted to decode non-topological quantum low-density-parity-check codes.
arXiv Detail & Related papers (2024-07-22T18:54:45Z) - Advantage of Quantum Neural Networks as Quantum Information Decoders [1.1842028647407803]
We study the problem of decoding quantum information encoded in the groundspaces of topological stabilizer Hamiltonians.
We first prove that the standard stabilizer-based error correction and decoding schemes work adequately perturbed well in such quantum codes.
We then prove that Quantum Neural Network (QNN) decoders provide an almost quadratic improvement on the readout error.
arXiv Detail & Related papers (2024-01-11T23:56:29Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding
Window [0.0]
We study sliding-window decoding, which corrects errors from previous syndrome measurement rounds while leaving the most recent errors for future correction.
Remarkably, we find that this improvement may not cost a larger decoding complexity.
arXiv Detail & Related papers (2023-11-06T17:56:49Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.