The Relative Value of Prediction in Algorithmic Decision Making
- URL: http://arxiv.org/abs/2312.08511v2
- Date: Thu, 30 May 2024 02:32:27 GMT
- Title: The Relative Value of Prediction in Algorithmic Decision Making
- Authors: Juan Carlos Perdomo,
- Abstract summary: We ask: What is the relative value of prediction in algorithmic decision making?
We identify simple, sharp conditions determining the relative value of prediction vis-a-vis expanding access.
We illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-\`a-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.
Related papers
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
This paper addresses the challenge of integrating a debiasing phase into predictive business process analytics.
Our framework leverages on adversial debiasing is evaluated on four case studies, showing a significant reduction in the contribution of biased variables to the predicted value.
arXiv Detail & Related papers (2024-10-03T15:56:03Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Allocation Requires Prediction Only if Inequality Is Low [24.57131078538418]
We evaluate the efficacy of prediction-based allocations in settings where individuals belong to larger units.
We find that prediction-based allocations outperform baseline methods only when between-unit inequality is low and the intervention budget is high.
arXiv Detail & Related papers (2024-06-19T23:23:32Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Making Decisions under Outcome Performativity [9.962472413291803]
We introduce a new optimality concept -- performative omniprediction.
A performative omnipredictor is a single predictor that simultaneously encodes the optimal decision rule.
We show that efficient performative omnipredictors exist, under a natural restriction of performative prediction.
arXiv Detail & Related papers (2022-10-04T17:04:47Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Fast, Optimal, and Targeted Predictions using Parametrized Decision
Analysis [0.0]
We develop a class of parametrized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions.
Predictions are constructed for physical activity data from the National Health and Nutrition Examination Survey.
arXiv Detail & Related papers (2020-06-23T15:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.