The Value of Prediction in Identifying the Worst-Off
- URL: http://arxiv.org/abs/2501.19334v2
- Date: Thu, 13 Feb 2025 09:47:38 GMT
- Title: The Value of Prediction in Identifying the Worst-Off
- Authors: Unai Fischer-Abaigar, Christoph Kern, Juan Carlos Perdomo,
- Abstract summary: Machine learning is increasingly used in government programs to identify and support the most vulnerable individuals.
This paper examines the welfare impacts of prediction in equity-driven contexts, and how they compare to other policy levers.
- Score: 3.468330970960535
- License:
- Abstract: Machine learning is increasingly used in government programs to identify and support the most vulnerable individuals, prioritizing assistance for those at greatest risk over optimizing aggregate outcomes. This paper examines the welfare impacts of prediction in equity-driven contexts, and how they compare to other policy levers, such as expanding bureaucratic capacity. Through mathematical models and a real-world case study on long-term unemployment amongst German residents, we develop a comprehensive understanding of the relative effectiveness of prediction in surfacing the worst-off. Our findings provide clear analytical frameworks and practical, data-driven tools that empower policymakers to make principled decisions when designing these systems.
Related papers
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
This paper addresses the challenge of integrating a debiasing phase into predictive business process analytics.
Our framework leverages on adversial debiasing is evaluated on four case studies, showing a significant reduction in the contribution of biased variables to the predicted value.
arXiv Detail & Related papers (2024-10-03T15:56:03Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - The Relative Value of Prediction in Algorithmic Decision Making [0.0]
We ask: What is the relative value of prediction in algorithmic decision making?
We identify simple, sharp conditions determining the relative value of prediction vis-a-vis expanding access.
We illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.
arXiv Detail & Related papers (2023-12-13T20:52:45Z) - Between accurate prediction and poor decision making: the AI/ML gap [0.19580473532948395]
This paper argues that AI/ML community has taken so far a too unbalanced approach by devoting excessive attention to the estimation of the state probability.
Few evidence exists about the impact of a wrong utility assessment on the resulting expected utility of the decision strategy.
arXiv Detail & Related papers (2023-10-03T13:15:02Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
We show that the inclusion of a biased human decision-maker can revert common relationships between the structure of the algorithm and the qualities of resulting decisions.
In the lab experiment, we demonstrate how predictions informed by gender-specific information can reduce average gender disparities in decisions.
arXiv Detail & Related papers (2021-10-28T17:24:45Z) - The Impact of Algorithmic Risk Assessments on Human Predictions and its
Analysis via Crowdsourcing Studies [79.66833203975729]
We conduct a vignette study in which laypersons are tasked with predicting future re-arrests.
Our key findings are as follows: Participants often predict that an offender will be rearrested even when they deem the likelihood of re-arrest to be well below 50%.
Judicial decisions, unlike participants' predictions, depend in part on factors that are to the likelihood of re-arrest.
arXiv Detail & Related papers (2021-09-03T11:09:10Z) - Fairness in Algorithmic Profiling: A German Case Study [0.0]
We compare and evaluate statistical models for predicting job seekers' risk of becoming long-term unemployed.
We show that these models can be used to predict long-term unemployment with competitive levels of accuracy.
We highlight that different classification policies have very different fairness implications.
arXiv Detail & Related papers (2021-08-04T13:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.