論文の概要: Occupancy Detection Based on Electricity Consumption
- arxiv url: http://arxiv.org/abs/2312.08535v1
- Date: Wed, 13 Dec 2023 21:49:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 00:45:54.443408
- Title: Occupancy Detection Based on Electricity Consumption
- Title(参考訳): 電力消費に基づく居住検知
- Authors: Thomas Brilland, Guillaume Matheron, Laetitia Leduc, Yukihide Nakada
- Abstract要約: 本稿では、低周波電力消費データから住宅が空き時間帯を抽出する新しい手法を提案する。
これは、シミュレーションおよび実消費曲線の両方において、励まされる結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a new methodology for extracting intervals when a home
is vacant from low-frequency electricity consumption data. The approach
combines multiple algorithms, including change point detection, classification,
period detection, and periodic spikes retrieval. It shows encouraging results
on both simulated and real consumption curves. This approach offers practical
insights for optimizing energy use and holds potential benefits for residential
consumers and utility companies in terms of energy cost reduction and
sustainability. Further research is needed to enhance its applicability in
diverse settings and with larger datasets.
- Abstract(参考訳): 本稿では、低周波電力消費データから住宅が空き時間帯を抽出する新しい手法を提案する。
このアプローチは、変更点の検出、分類、周期検出、周期スパイク検索など、複数のアルゴリズムを組み合わせる。
実消費曲線と実消費曲線の両方において有意な結果を示す。
このアプローチはエネルギー使用を最適化するための実用的な洞察を提供し、エネルギーコストの削減と持続可能性の観点から住宅用消費者や電力会社に潜在的利益をもたらす。
多様な設定とより大きなデータセットで適用性を高めるためには、さらなる研究が必要である。
関連論文リスト
- A Scoping Review of Energy Load Disaggregation [1.6783315930924723]
エネルギー負荷の分散は、需要側管理の有効性を高めることで電力グリッドのバランスに寄与する。
現在、この分野は包括的概要を欠いている。
国内電力消費が最も研究されている地域であり、産業負荷の分散など他の地域もほとんど議論されていない。
論文 参考訳(メタデータ) (2024-01-10T09:59:12Z) - Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning [51.02352381270177]
Split Federated Learning (SFL)は、最近、有望な分散学習技術として登場した。
SFLにおけるカット層の選択は、クライアントのエネルギー消費とプライバシに大きな影響を与える可能性がある。
本稿では、SFLプロセスの概要を概観し、エネルギー消費とプライバシを徹底的に分析する。
論文 参考訳(メタデータ) (2023-11-15T23:23:42Z) - Towards Sequence Utility Maximization under Utility Occupancy Measure [53.234101208024335]
データベースでは、ユーティリティは各パターンに対して柔軟な基準であるが、ユーティリティ共有を無視するため、より絶対的な基準である。
まず、まず、シーケンスデータに対するユーティリティの占有を定義し、高ユーティリティ・アクシデント・パターンマイニングの問題を提起する。
SuMU(Sequence Utility Maximization with Utility cccupancy measure)と呼ばれるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-20T17:28:53Z) - Domain Knowledge Aids in Signal Disaggregation; the Example of the
Cumulative Water Heater [68.8204255655161]
住宅における累積給湯器(CWH)の電力の検出と分散を目的とした教師なし低周波法を提案する。
本モデルでは,パワースパイクの形状と発生時刻を両立させることにより,教師なし信号の分解の難しさを回避する。
我々のモデルは、単純さに拘わらず、有望なアプリケーションを提供する: オフピーク契約における設定ミスの検出と性能劣化の遅さ。
論文 参考訳(メタデータ) (2022-03-22T10:39:19Z) - Investigating Underlying Drivers of Variability in Residential Energy
Usage Patterns with Daily Load Shape Clustering of Smart Meter Data [53.51471969978107]
スマートメータの大規模展開は、日々の負荷パターンの分散を探求する研究の動機となっている。
本稿では,電力消費パターンが変動性を示すメカニズムを明らかにすることを目的とした。
論文 参考訳(メタデータ) (2021-02-16T16:56:27Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Activity Detection And Modeling Using Smart Meter Data: Concept And Case
Studies [6.7336801526732755]
本稿では, より効果的に活動の分離を行う手法を提案する。
住宅負荷データと特徴量に基づくアクティビティ検出に機械学習を活用するフレームワークを開発する。
本研究では, 数値ケーススタディを通じて, 活動検出手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-26T02:36:35Z) - Building power consumption datasets: Survey, taxonomy and future
directions [2.389598109913753]
本研究は,建築エネルギー消費データセットの数値的および方法論的性質を調査,研究,可視化するために提案される。
地理的な位置,収集期間,監視対象世帯数,収集データのサンプリング率,サブメータ家電数,抽出特徴量,リリース日など,合計31のデータベースを調査・比較した。
新たなデータセット、すなわち、注釈付き消費電力異常検出データセットであるカタール大学データセットが提示されている。
論文 参考訳(メタデータ) (2020-09-17T10:19:21Z) - Simulating Tariff Impact in Electrical Energy Consumption Profiles with
Conditional Variational Autoencoders [0.0]
本稿では,条件付き変分オートエンコーダ(CVAE)を用いて,消費者の日常消費プロファイルを生成する手法を提案する。
この方法の主な貢献は、生成した消費プロファイルにおけるリバウンドと副作用を再現する能力である。
論文 参考訳(メタデータ) (2020-06-10T08:05:35Z) - Energy Disaggregation with Semi-supervised Sparse Coding [0.0]
エネルギー分解研究は、集約されたエネルギー消費データを部品機器に分解することを目的としている。
本稿では,エネルギー保全のための大規模家庭用電力利用データセットを用いて,スパース符号化に基づく差別的分散モデルの評価を行った。
論文 参考訳(メタデータ) (2020-04-20T21:05:25Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。