A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs
for Financial Sentiment Analysis
- URL: http://arxiv.org/abs/2312.08725v1
- Date: Thu, 14 Dec 2023 08:13:28 GMT
- Title: A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs
for Financial Sentiment Analysis
- Authors: Sorouralsadat Fatemi, Yuheng Hu
- Abstract summary: We employ two approaches: in-context learning and fine-tuning LLMs on a finance-domain dataset.
Our results demonstrate that fine-tuned smaller LLMs can achieve comparable performance to state-of-the-art fine-tuned LLMs.
There is no observed enhancement in performance for finance-domain sentiment analysis when the number of shots for in-context learning is increased.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial sentiment analysis plays a crucial role in uncovering latent
patterns and detecting emerging trends, enabling individuals to make
well-informed decisions that may yield substantial advantages within the
constantly changing realm of finance. Recently, Large Language Models (LLMs)
have demonstrated their effectiveness in diverse domains, showcasing remarkable
capabilities even in zero-shot and few-shot in-context learning for various
Natural Language Processing (NLP) tasks. Nevertheless, their potential and
applicability in the context of financial sentiment analysis have not been
thoroughly explored yet. To bridge this gap, we employ two approaches:
in-context learning (with a focus on gpt-3.5-turbo model) and fine-tuning LLMs
on a finance-domain dataset. Given the computational costs associated with
fine-tuning LLMs with large parameter sizes, our focus lies on smaller LLMs,
spanning from 250M to 3B parameters for fine-tuning. We then compare the
performances with state-of-the-art results to evaluate their effectiveness in
the finance-domain. Our results demonstrate that fine-tuned smaller LLMs can
achieve comparable performance to state-of-the-art fine-tuned LLMs, even with
models having fewer parameters and a smaller training dataset. Additionally,
the zero-shot and one-shot performance of LLMs produces comparable results with
fine-tuned smaller LLMs and state-of-the-art outcomes. Furthermore, our
analysis demonstrates that there is no observed enhancement in performance for
finance-domain sentiment analysis when the number of shots for in-context
learning is increased.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - Financial Statement Analysis with Large Language Models [0.0]
We provide standardized and anonymous financial statements to GPT4 and instruct the model to analyze them to determine the direction of future earnings.
We find that the prediction accuracy of the LLM is on par with the performance of a narrowly trained state-of-the-art ML model.
Our trading strategies based on GPT's predictions yield a higher Sharpe ratio and alphas than strategies based on other models.
arXiv Detail & Related papers (2024-07-25T08:36:58Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing tasks.
It remains unclear whether LLMs exhibit robustness in learning on graphs.
arXiv Detail & Related papers (2024-07-16T09:05:31Z) - The Economic Implications of Large Language Model Selection on Earnings and Return on Investment: A Decision Theoretic Model [0.0]
We use a decision-theoretic approach to compare the financial impact of different language models.
The study reveals how the superior accuracy of more expensive models can, under certain conditions, justify a greater investment.
This article provides a framework for companies looking to optimize their technology choices.
arXiv Detail & Related papers (2024-05-27T20:08:41Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
Generalist language models tend to fall short in tasks specifically tailored for finance.
Two foundation models with less than 1.5B parameters have been adapted using a wide range of strategies.
We show that small LLMs have comparable performance to larger scale models, while being more efficient in terms of parameters and data.
arXiv Detail & Related papers (2024-01-26T11:04:01Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.