論文の概要: Managing the unknown: a survey on Open Set Recognition and tangential
areas
- arxiv url: http://arxiv.org/abs/2312.08785v2
- Date: Fri, 5 Jan 2024 11:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 17:41:52.756001
- Title: Managing the unknown: a survey on Open Set Recognition and tangential
areas
- Title(参考訳): 未知領域の管理:オープンセット認識と接点領域に関する調査
- Authors: Marcos Barcina-Blanco, Jesus L. Lobo, Pablo Garcia-Bringas, Javier Del
Ser
- Abstract要約: オープンセット認識モデルは、テストフェーズに到達したサンプルから未知のクラスを検出すると同時に、既知のクラスに属するサンプルの分類において優れたパフォーマンスを維持することができる。
本稿では,オープンセット認識に関する最近の文献を包括的に概観し,この分野と他の機械学習研究領域との共通プラクティス,制限,関連性を明らかにする。
私たちの研究は、オープンな問題も明らかにし、より安全な人工知能手法への将来の取り組みを動機づけ、具体化するいくつかの研究方向を提案する。
- 参考スコア(独自算出の注目度): 7.345136916791223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world scenarios classification models are often required to perform
robustly when predicting samples belonging to classes that have not appeared
during its training stage. Open Set Recognition addresses this issue by
devising models capable of detecting unknown classes from samples arriving
during the testing phase, while maintaining a good level of performance in the
classification of samples belonging to known classes. This review
comprehensively overviews the recent literature related to Open Set
Recognition, identifying common practices, limitations, and connections of this
field with other machine learning research areas, such as continual learning,
out-of-distribution detection, novelty detection, and uncertainty estimation.
Our work also uncovers open problems and suggests several research directions
that may motivate and articulate future efforts towards more safe Artificial
Intelligence methods.
- Abstract(参考訳): 実世界のシナリオでは、トレーニング段階では現れていないクラスに属するサンプルを予測する際に、分類モデルは堅牢に実行する必要があることが多い。
Open Set Recognitionは、テストフェーズに到着したサンプルから未知のクラスを検出できるモデルを考案し、既知のクラスに属するサンプルの分類において優れたパフォーマンスを維持することで、この問題に対処する。
本稿では,オープンセット認識に関する最近の文献を概観し,連続学習,分布外検出,新奇性検出,不確実性推定など他の機械学習研究分野との共通実践,限界,関連について概説する。
私たちの研究は、オープンな問題も明らかにし、より安全な人工知能手法への将来の取り組みを動機づけ、具体化するいくつかの研究方向を提案する。
関連論文リスト
- Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
リスクの高い環境では、深層学習モデルは不確実性を判断し、誤分類の可能性がかなり高い場合に入力を拒否しなければなりません。
我々は,全スライド画像の分類において,最もよく使われている不確実性と頑健さの厳密な評価を行う。
我々は一般的に,手法のアンサンブルが,ドメインシフトやラベルノイズに対するロバスト性の向上とともに,より良い不確実性評価につながることを観察する。
論文 参考訳(メタデータ) (2023-01-03T11:34:36Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Semantic Novelty Detection via Relational Reasoning [17.660958043781154]
本稿では,関係推論に基づく表現学習パラダイムを提案する。
実験の結果,この知識は様々なシナリオに直接伝達可能であることがわかった。
クローズドセット認識モデルを信頼できるオープンセットに変換するプラグイン・アンド・プレイモジュールとして利用することができる。
論文 参考訳(メタデータ) (2022-07-18T15:49:27Z) - Open-set Recognition via Augmentation-based Similarity Learning [11.706887820422002]
ペアの類似点を学習することで未知(または見知らぬクラスサンプル)を検出することを提案する。
我々はOPG(Pseudo unseen data generationに基づくオープンセット認識)と呼ぶ。
論文 参考訳(メタデータ) (2022-03-24T17:49:38Z) - The Familiarity Hypothesis: Explaining the Behavior of Deep Open Set
Methods [86.39044549664189]
特徴ベクトルデータに対する異常検出アルゴリズムは異常を外れ値として識別するが、外れ値検出はディープラーニングではうまく機能しない。
本論文は, 新規性の有無ではなく, 慣れ親しんだ特徴の欠如を検知しているため, これらの手法が成功するというFamiliarity仮説を提案する。
本論文は,親しみやすさの検出が表現学習の必然的な結果であるかどうかを論じる。
論文 参考訳(メタデータ) (2022-03-04T18:32:58Z) - A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution
Detection: Solutions and Future Challenges [28.104112546546936]
機械学習モデルは、トレーニング分布から分岐したサンプルに遭遇することが多い。
類似した共有概念にもかかわらず、アウト・オブ・ディストリビューション、オープン・セット、異常検出は独立して研究されている。
本調査は,各分野における多数の卓越した作品について,クロスドメインかつ包括的レビューを行うことを目的としている。
論文 参考訳(メタデータ) (2021-10-26T22:05:31Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
オープンセット認識では、分類器はトレーニング時に未知の未知のクラスを検出する必要がある。
最近提案されたカプセルネットワークは、特に画像認識において、多くの分野で代替案を上回ることが示されている。
本提案では,訓練中,同じ既知のクラスのカプセルの特徴を,事前に定義されたガウス型に適合させることを推奨する。
論文 参考訳(メタデータ) (2021-04-19T09:39:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
オープンセット認識は、事前に定義されたクラスからサンプルを同時に分類し、残りを「未知」として識別することを目的としている。
本稿では,各既知圏に対応するクラス外空間のポテンシャル表現であるReciprocal Pointを提案する。
相互点によって構成される有界空間に基づいて、未知のリスクは多圏相互作用によって減少する。
論文 参考訳(メタデータ) (2020-10-31T03:20:31Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
オープンセット認識のための条件付きガウス分布学習(CGDL)を提案する。
未知のサンプルを検出することに加えて、異なる潜伏特徴を異なるガウスモデルに近似させることにより、既知のサンプルを分類することもできる。
いくつかの標準画像に対する実験により,提案手法はベースライン法を著しく上回り,新たな最先端結果が得られることが明らかになった。
論文 参考訳(メタデータ) (2020-03-19T14:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。