Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning
- URL: http://arxiv.org/abs/2312.08865v1
- Date: Thu, 14 Dec 2023 12:39:29 GMT
- Title: Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning
- Authors: Zhiyue Liu, Jinyuan Liu, Fanrong Ma
- Abstract summary: Previous works leverage the CLIP's cross-modal association ability for image captioning, relying solely on textual information under unsupervised settings.
This paper proposes a novel method to address these issues by incorporating synthetic image-text pairs.
A pre-trained text-to-image model is deployed to obtain images that correspond to textual data, and the pseudo features of generated images are optimized toward the real ones in the CLIP embedding space.
- Score: 13.357749288588039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although image captioning models have made significant advancements in recent
years, the majority of them heavily depend on high-quality datasets containing
paired images and texts which are costly to acquire. Previous works leverage
the CLIP's cross-modal association ability for image captioning, relying solely
on textual information under unsupervised settings. However, not only does a
modality gap exist between CLIP text and image features, but a discrepancy also
arises between training and inference due to the unavailability of real-world
images, which hinders the cross-modal alignment in text-only captioning. This
paper proposes a novel method to address these issues by incorporating
synthetic image-text pairs. A pre-trained text-to-image model is deployed to
obtain images that correspond to textual data, and the pseudo features of
generated images are optimized toward the real ones in the CLIP embedding
space. Furthermore, textual information is gathered to represent image
features, resulting in the image features with various semantics and the
bridged modality gap. To unify training and inference, synthetic image features
would serve as the training prefix for the language decoder, while real images
are used for inference. Additionally, salient objects in images are detected as
assistance to enhance the learning of modality alignment. Experimental results
demonstrate that our method obtains the state-of-the-art performance on
benchmark datasets.
Related papers
- ComAlign: Compositional Alignment in Vision-Language Models [2.3250871476216814]
We introduce Compositional Alignment (ComAlign) to discover more exact correspondence of text and image components.
Our methodology emphasizes that the compositional structure extracted from the text modality must also be retained in the image modality.
We train a lightweight network lying on top of existing visual and language encoders using a small dataset.
arXiv Detail & Related papers (2024-09-12T16:46:41Z) - Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
Most vision-language foundation models employ image-text datasets for pretraining.
We propose COSA, a COncatenated SAmple pretrained vision-language foundation model.
We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining.
This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus.
arXiv Detail & Related papers (2023-06-15T12:29:42Z) - Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding [6.798129852396113]
We introduce a simple and effective method to improve compositional reasoning in Vision-Language Models (VLMs)
Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework.
When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-15T03:26:28Z) - Variational Distribution Learning for Unsupervised Text-to-Image
Generation [42.3246826401366]
We propose a text-to-image generation algorithm based on deep neural networks when text captions for images are unavailable during training.
We employ a pretrained CLIP model, which is capable of properly aligning embeddings of images and corresponding texts in a joint space.
We optimize a text-to-image generation model by maximizing the data log-likelihood conditioned on pairs of image-text CLIP embeddings.
arXiv Detail & Related papers (2023-03-28T16:18:56Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
This paper presents a weakly supervised pre-training method that can acquire effective scene text representations.
Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features.
Experiments show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks.
arXiv Detail & Related papers (2022-03-08T08:10:45Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - FILIP: Fine-grained Interactive Language-Image Pre-Training [106.19474076935363]
Fine-grained Interactive Language-Image Pre-training achieves finer-level alignment through a cross-modal late interaction mechanism.
We construct a new large-scale image-text pair dataset called FILIP300M for pre-training.
Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks.
arXiv Detail & Related papers (2021-11-09T17:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.