Complexity of Digital Quantum Simulation in the Low-Energy Subspace: Applications and a Lower Bound
- URL: http://arxiv.org/abs/2312.08867v3
- Date: Fri, 12 Jul 2024 01:49:27 GMT
- Title: Complexity of Digital Quantum Simulation in the Low-Energy Subspace: Applications and a Lower Bound
- Authors: Weiyuan Gong, Shuo Zhou, Tongyang Li,
- Abstract summary: We show that the simulation error depends on the effective low-energy norm of the Hamiltonian for a variety of digital quantum simulation algorithms and quantum systems.
For simulating spin models in the low-energy subspace, we prove that randomized product formulas such as qDRIFT and random permutation require smaller Trotter numbers.
- Score: 12.037722396961446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital quantum simulation has broad applications in approximating unitary evolution of Hamiltonians. In practice, many simulation tasks for quantum systems focus on quantum states in the low-energy subspace instead of the entire Hilbert space. In this paper, we systematically investigate the complexity of digital quantum simulation based on product formulas in the low-energy subspace. We show that the simulation error depends on the effective low-energy norm of the Hamiltonian for a variety of digital quantum simulation algorithms and quantum systems, allowing improvements over the previous complexities for full unitary simulations even for imperfect state preparations due to thermalization. In particular, for simulating spin models in the low-energy subspace, we prove that randomized product formulas such as qDRIFT and random permutation require smaller Trotter numbers. Such improvement also persists in symmetry-protected digital quantum simulations. We prove a similar improvement in simulating the dynamics of power-law quantum interactions. We also provide a query lower bound for general digital quantum simulations in the low-energy subspace.
Related papers
- Experimental Quantum Simulation of Chemical Dynamics [0.0]
Existing digital quantum algorithms for chemical simulation require many logical qubits and gates.
Here, we use an analog approach to carry out the first quantum simulations of chemical reactions.
arXiv Detail & Related papers (2024-09-06T06:28:05Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum simulation of quantum mechanical system with spatial
noncommutativity [0.0]
We demonstrate the quantum simulation of a quantum mechanical system with spatial noncommutativity.
We use the novel group theoretical formalism to map the Hamiltonian of such a noncommutative quantum system into the ordinary quantum mechanical Hamiltonian.
arXiv Detail & Related papers (2022-11-15T17:51:16Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Variational Quantum Simulation of Chemical Dynamics with Quantum
Computers [23.13347792805101]
We present variational simulations of real-space quantum dynamics suitable for implementation in Noisy Intermediate-Scale Quantum (NISQ) devices.
Motivated by the insights that most chemical dynamics occur in the low energy subspace, we propose a subspace expansion method.
arXiv Detail & Related papers (2021-10-12T16:28:52Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z) - Digital quantum simulation framework for energy transport in an open
quantum system [1.9551668880584971]
Digital quantum simulations offer greater universality and flexibility over analog simulations.
We give a theoretical framework for digital quantum simulation of ENAQT by introducing new quantum evolution operators.
We simulate the FMO complex in the digital setting, reproducing theoretical and experimental evidence of the dynamics.
arXiv Detail & Related papers (2020-06-25T02:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.