Quantum Simulation of Chiral Phase Transitions
- URL: http://arxiv.org/abs/2112.03944v2
- Date: Mon, 5 Dec 2022 17:40:59 GMT
- Title: Quantum Simulation of Chiral Phase Transitions
- Authors: Alexander M. Czajka, Zhong-Bo Kang, Henry Ma, Fanyi Zhao
- Abstract summary: We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Nambu-Jona-Lasinio (NJL) model has been widely studied for investigating
the chiral phase structure of strongly interacting matter. The study of the
thermodynamics of field theories within the framework of Lattice Field Theory
is limited by the sign problem, which prevents Monte Carlo evaluation of the
functional integral at a finite chemical potential. Using the quantum imaginary
time evolution (QITE) algorithm, we construct a quantum simulation for the
$(1+1)$ dimensional NJL model at finite temperature and finite chemical
potential. We observe consistency among digital quantum simulation, exact
diagonalization, and analytical solution, indicating further applications of
quantum computing in simulating QCD thermodynamics.
Related papers
- Real-time chiral dynamics at finite temperature from quantum simulation [0.0]
We explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED.
We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution.
arXiv Detail & Related papers (2024-07-31T10:10:42Z) - Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms [0.0]
We investigate the use of variational quantum algorithms for simulating the thermodynamic properties of dinuclear metal complexes.
The results demonstrate the effectiveness of variational quantum algorithms in simulating thermal states and exploring the thermodynamic properties of low-dimensional molecular magnetic systems.
arXiv Detail & Related papers (2024-04-09T15:09:54Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal
Pure Quantum States [0.0]
We propose a generalization of thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics.
We numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach.
arXiv Detail & Related papers (2022-08-28T01:26:10Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Variational thermal quantum simulation of the lattice Schwinger model [0.0]
We propose a variational approach, using the lattice Schwinger model, to simulate the confinement or deconfinement.
Results of numeral simulation show that the string tension decreases both along the increasing of the temperature and the chemical potential.
Our work paves a way for exploiting near-term quantum computers for investigating the phase diagram of finite-temperature and finite density for nuclear matters.
arXiv Detail & Related papers (2022-05-25T13:29:05Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.