HAROOD: Human Activity Classification and Out-of-Distribution Detection
with Short-Range FMCW Radar
- URL: http://arxiv.org/abs/2312.08894v1
- Date: Thu, 14 Dec 2023 12:56:28 GMT
- Title: HAROOD: Human Activity Classification and Out-of-Distribution Detection
with Short-Range FMCW Radar
- Authors: Sabri Mustafa Kahya, Muhammet Sami Yavuz, Eckehard Steinbach
- Abstract summary: We propose HAROOD as a short-range FMCW radar-based human activity classifier and out-of-distribution detector.
It aims to classify human sitting, standing, and walking activities and to detect any other moving or stationary object as OOD.
On our dataset collected by 60 GHz short-range FMCW radar, we achieve an average classification accuracy of 96.51%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose HAROOD as a short-range FMCW radar-based human activity classifier
and out-of-distribution (OOD) detector. It aims to classify human sitting,
standing, and walking activities and to detect any other moving or stationary
object as OOD. We introduce a two-stage network. The first stage is trained
with a novel loss function that includes intermediate reconstruction loss,
intermediate contrastive loss, and triplet loss. The second stage uses the
first stage's output as its input and is trained with cross-entropy loss. It
creates a simple classifier that performs the activity classification. On our
dataset collected by 60 GHz short-range FMCW radar, we achieve an average
classification accuracy of 96.51%. Also, we achieve an average AUROC of 95.04%
as an OOD detector. Additionally, our extensive evaluations demonstrate the
superiority of HAROOD over the state-of-the-art OOD detection methods in terms
of standard OOD detection metrics.
Related papers
- FOOD: Facial Authentication and Out-of-Distribution Detection with Short-Range FMCW Radar [0.0]
This paper proposes a short-range FMCW radar-based facial authentication and out-of-distribution (OOD) detection framework.
Our pipeline jointly estimates the correct classes for the in-distribution (ID) samples and detects the OOD samples to prevent their inaccurate prediction.
For our dataset, gathered using a 60 GHz short-range FMCW radar, our network achieves an average classification accuracy of 98.07% in identifying in-distribution human faces.
arXiv Detail & Related papers (2024-06-06T23:08:03Z) - A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? [49.88894124047644]
We take a closer look at 20 state-of-the-art OOD detection methods.
We show that poor separation between incorrectly classified ID samples vs. OOD samples is an overlooked yet important limitation of existing methods.
arXiv Detail & Related papers (2024-04-02T09:40:22Z) - Scaling for Training Time and Post-hoc Out-of-distribution Detection
Enhancement [41.650761556671775]
In this paper, we offer insights and analyses of recent state-of-the-art out-of-distribution (OOD) detection methods.
We demonstrate that activation pruning has a detrimental effect on OOD detection, while activation scaling enhances it.
We achieve AUROC scores of +1.85% for near-OOD and +0.74% for far-OOD datasets on the OpenOOD v1.5 ImageNet-1K benchmark.
arXiv Detail & Related papers (2023-09-30T02:10:54Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - HOOD: Real-Time Human Presence and Out-of-Distribution Detection Using FMCW Radar [0.0]
Real-time capable human presence and out-of-distribution (OOD) detection method using 60 GHz short-range FMCW radar.
Hood aims to accurately detect the presence of humans in the presence or absence of moving and stationary disturbers.
On our dataset collected with a 60 GHz short-range FMCW radar, we achieve an average AUROC of 94.36%.
arXiv Detail & Related papers (2023-07-24T17:09:40Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - MCROOD: Multi-Class Radar Out-Of-Distribution Detection [0.0]
This work proposes a reconstruction-based multi-class OOD detector that operates on radar range doppler images (RDIs)
The detector aims to classify any moving object other than a person sitting, standing, or walking as OOD.
We also provide a simple yet effective pre-processing technique to detect minor human body movements like breathing.
arXiv Detail & Related papers (2023-03-10T22:44:24Z) - Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW
Radar [0.0]
We propose a novel reconstruction-based OOD detector to operate on the radar domain.
Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples.
We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar.
arXiv Detail & Related papers (2023-02-27T23:03:51Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.