FOOD: Facial Authentication and Out-of-Distribution Detection with Short-Range FMCW Radar
- URL: http://arxiv.org/abs/2406.04546v1
- Date: Thu, 6 Jun 2024 23:08:03 GMT
- Title: FOOD: Facial Authentication and Out-of-Distribution Detection with Short-Range FMCW Radar
- Authors: Sabri Mustafa Kahya, Boran Hamdi Sivrikaya, Muhammet Sami Yavuz, Eckehard Steinbach,
- Abstract summary: This paper proposes a short-range FMCW radar-based facial authentication and out-of-distribution (OOD) detection framework.
Our pipeline jointly estimates the correct classes for the in-distribution (ID) samples and detects the OOD samples to prevent their inaccurate prediction.
For our dataset, gathered using a 60 GHz short-range FMCW radar, our network achieves an average classification accuracy of 98.07% in identifying in-distribution human faces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a short-range FMCW radar-based facial authentication and out-of-distribution (OOD) detection framework. Our pipeline jointly estimates the correct classes for the in-distribution (ID) samples and detects the OOD samples to prevent their inaccurate prediction. Our reconstruction-based architecture consists of a main convolutional block with one encoder and multi-decoder configuration, and intermediate linear encoder-decoder parts. Together, these elements form an accurate human face classifier and a robust OOD detector. For our dataset, gathered using a 60 GHz short-range FMCW radar, our network achieves an average classification accuracy of 98.07% in identifying in-distribution human faces. As an OOD detector, it achieves an average Area Under the Receiver Operating Characteristic (AUROC) curve of 98.50% and an average False Positive Rate at 95% True Positive Rate (FPR95) of 6.20%. Also, our extensive experiments show that the proposed approach outperforms previous OOD detectors in terms of common OOD detection metrics.
Related papers
- HAROOD: Human Activity Classification and Out-of-Distribution Detection
with Short-Range FMCW Radar [0.0]
We propose HAROOD as a short-range FMCW radar-based human activity classifier and out-of-distribution detector.
It aims to classify human sitting, standing, and walking activities and to detect any other moving or stationary object as OOD.
On our dataset collected by 60 GHz short-range FMCW radar, we achieve an average classification accuracy of 96.51%.
arXiv Detail & Related papers (2023-12-14T12:56:28Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - HAct: Out-of-Distribution Detection with Neural Net Activation
Histograms [7.795929277007233]
We propose a novel descriptor, HAct, for OOD detection, that is, probability distributions (approximated by histograms) of output values of neural network layers under the influence of incoming data.
We demonstrate that HAct is significantly more accurate than state-of-the-art in OOD detection on multiple image classification benchmarks.
arXiv Detail & Related papers (2023-09-09T16:22:18Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs.
We propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples.
arXiv Detail & Related papers (2023-06-26T12:51:32Z) - Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW
Radar [0.0]
We propose a novel reconstruction-based OOD detector to operate on the radar domain.
Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples.
We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar.
arXiv Detail & Related papers (2023-02-27T23:03:51Z) - Out-of-distribution Detection with Deep Nearest Neighbors [33.71627349163909]
Out-of-distribution (OOD) detection is a critical task for deploying machine learning models in the open world.
In this paper, we explore the efficacy of non-parametric nearest-neighbor distance for OOD detection.
We demonstrate the effectiveness of nearest-neighbor-based OOD detection on several benchmarks and establish superior performance.
arXiv Detail & Related papers (2022-04-13T16:45:21Z) - Oriented R-CNN for Object Detection [61.78746189807462]
This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN.
In the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner.
The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them.
arXiv Detail & Related papers (2021-08-12T12:47:43Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining [51.19164318924997]
Adrial Training with informative Outlier Mining improves robustness of OOD detection.
ATOM achieves state-of-the-art performance under a broad family of classic and adversarial OOD evaluation tasks.
arXiv Detail & Related papers (2020-06-26T20:58:05Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.