論文の概要: CogAgent: A Visual Language Model for GUI Agents
- arxiv url: http://arxiv.org/abs/2312.08914v1
- Date: Thu, 14 Dec 2023 13:20:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 22:16:33.324968
- Title: CogAgent: A Visual Language Model for GUI Agents
- Title(参考訳): CogAgent: GUIエージェントのためのビジュアル言語モデル
- Authors: Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui
Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, Jie Tang
- Abstract要約: GUI理解とナビゲーションに特化した視覚言語モデル(VLM)であるCogAgentを紹介する。
低解像度画像エンコーダと高解像度画像エンコーダの両方を利用することで、CogAgentは1120*1120の解像度で入力をサポートする。
CogAgentは、VQAv2、OK-VQA、Text-VQA、ST-VQA、ChartQA、 infoVQA、DocVQA、MM-Vet、POPEを含む5つの一般的なVQAベンチマークで、技術の現状を達成している。
- 参考スコア(独自算出の注目度): 40.15940450220558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People are spending an enormous amount of time on digital devices through
graphical user interfaces (GUIs), e.g., computer or smartphone screens. Large
language models (LLMs) such as ChatGPT can assist people in tasks like writing
emails, but struggle to understand and interact with GUIs, thus limiting their
potential to increase automation levels. In this paper, we introduce CogAgent,
an 18-billion-parameter visual language model (VLM) specializing in GUI
understanding and navigation. By utilizing both low-resolution and
high-resolution image encoders, CogAgent supports input at a resolution of
1120*1120, enabling it to recognize tiny page elements and text. As a
generalist visual language model, CogAgent achieves the state of the art on
five text-rich and four general VQA benchmarks, including VQAv2, OK-VQA,
Text-VQA, ST-VQA, ChartQA, infoVQA, DocVQA, MM-Vet, and POPE. CogAgent, using
only screenshots as input, outperforms LLM-based methods that consume extracted
HTML text on both PC and Android GUI navigation tasks -- Mind2Web and AITW,
advancing the state of the art. The model and codes are available at
\url{https://github.com/THUDM/CogVLM}.
- Abstract(参考訳): 人々はグラフィカルユーザインタフェース(GUI)、例えばコンピュータやスマートフォンの画面を通じて、デジタルデバイスに膨大な時間を費やしています。
ChatGPTのような大きな言語モデル(LLM)は、電子メールを書くといったタスクを補助するが、GUIを理解したり操作したりするのに苦労するため、自動化レベルを増やす可能性を制限することができる。
本稿では,GUIの理解とナビゲーションに特化した18ビリオンパラメータビジュアル言語モデル(VLM)であるCogAgentを紹介する。
低解像度画像エンコーダと高解像度画像エンコーダの両方を利用することで、CogAgentは1120*1120の解像度で入力をサポートし、小さなページ要素とテキストを認識できる。
一般的なビジュアル言語モデルとして、CogAgentはVQAv2、OK-VQA、Text-VQA、ST-VQA、ChartQA、infoVQA、DocVQA、MM-Vet、POPEを含む5つのテキストリッチおよび4つの一般的なVQAベンチマーク上で、最先端を達成している。
CogAgentはスクリーンショットのみを入力として使用し、PCとAndroidのGUIナビゲーションタスク(Mind2WebとAITW)で抽出したHTMLテキストを消費するLLMベースのメソッドよりも優れており、最先端の技術が進歩している。
モデルとコードは \url{https://github.com/thudm/cogvlm} で利用可能である。
関連論文リスト
- ClickAgent: Enhancing UI Location Capabilities of Autonomous Agents [0.0]
ClickAgentは、自律エージェントを構築するための新しいフレームワークである。
ClickAgentでは、MLLMが推論とアクションプランニングを処理し、別のUIロケーションモデルが画面上の関連するUI要素を識別する。
本評価は,Androidスマートフォンエミュレータと実際のAndroidスマートフォンの両方で実施し,タスク成功率をエージェント性能測定の指標として用いた。
論文 参考訳(メタデータ) (2024-10-09T14:49:02Z) - MobileFlow: A Multimodal LLM For Mobile GUI Agent [4.7619361168442005]
本稿では,モバイルGUIエージェント用のマルチモーダルな大規模言語モデルであるMobileFlowを紹介する。
MobileFlowは約21億のパラメータを含み、新しいハイブリッドビジュアルエンコーダを備えている。
画像データを完全に解釈し、GUIインタラクションタスクのユーザ命令を理解する能力がある。
論文 参考訳(メタデータ) (2024-07-05T08:37:10Z) - Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding [30.624179161014283]
そこで我々は,ScreenPRタスクに対処するために,新しいToLグラウンド機構を用いたToLエージェントを提案する。
入力点座標とそれに対応するGUIスクリーンショットに基づいて、我々のToLエージェントは階層的なレイアウトツリーを構築する。
木をベースとしたToLエージェントは,指定領域の内容だけでなく,要素間のレイアウトや空間的関係も理解している。
論文 参考訳(メタデータ) (2024-06-27T15:34:16Z) - GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models [58.08177466768262]
大規模言語モデル(LLM)では、複雑なロングコンテクストのタスクに対処するためには、ロングコンテクストの能力が不可欠である。
グラフをグラフに構造化し、エージェントを使ってグラフを自律的に探索することで、長いテキストを扱うように設計されたグラフベースのエージェントシステムであるGraphReaderを紹介する。
LV-Evalデータセットの実験結果によると、GraphReaderは4kコンテキストウィンドウを使用して、16kから256kまでのコンテキスト長で一貫してGPT-4-128kを上回っている。
論文 参考訳(メタデータ) (2024-06-20T17:57:51Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
MLLM(Multimodal large language model)は、人間のような自律型言語エージェントが現実世界の環境と相互作用する可能性を示している。
包括的環境認識(CEP)と条件付き行動予測(CAP)の2つの新しいアプローチを備えた包括的認知型LLMエージェントCoCo-Agentを提案する。
AITW と META-GUI ベンチマークにおいて,我々のエージェントは実シナリオで有望な性能を示す新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T08:29:03Z) - ScreenAgent: A Vision Language Model-driven Computer Control Agent [17.11085071288194]
視覚言語モデル(VLM)エージェントが実際のコンピュータ画面と対話する環境を構築する。
この環境では、エージェントは、マウスとキーボードのアクションを出力することで、スクリーンショットを観察し、GUI(Graphics User Interface)を操作することができる。
そこで,ScreenAgentデータセットを構築し,様々なコンピュータタスクの完了時にスクリーンショットとアクションシーケンスを収集する。
論文 参考訳(メタデータ) (2024-02-09T02:33:45Z) - TAG: Boosting Text-VQA via Text-aware Visual Question-answer Generation [55.83319599681002]
Text-VQAは、画像中のテキストの手がかりを理解する必要がある質問に答えることを目的としている。
画像のシーンコンテキストで利用可能な既存のリッチテキストを明示的に利用することにより,高品質で多様なQAペアを生成する方法を開発した。
論文 参考訳(メタデータ) (2022-08-03T02:18:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。