論文の概要: Fast Sampling via De-randomization for Discrete Diffusion Models
- arxiv url: http://arxiv.org/abs/2312.09193v1
- Date: Thu, 14 Dec 2023 18:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 20:39:37.971396
- Title: Fast Sampling via De-randomization for Discrete Diffusion Models
- Title(参考訳): 離散拡散モデルに対する非ランダム化による高速サンプリング
- Authors: Zixiang Chen and Huizhuo Yuan and Yongqian Li and Yiwen Kou and Junkai
Zhang and Quanquan Gu
- Abstract要約: 本稿では, 離散拡散モデルの高速化に繋がる非ランダム化拡散過程を提案する。
提案手法は, ニューラルネットワークに対する関数評価の回数を大幅に削減し, サンプリング処理を高速化する。
自然言語生成および機械翻訳タスクの実験は,本手法の優れた性能を示す。
- 参考スコア(独自算出の注目度): 52.554915711265856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as powerful tools for high-quality data
generation, such as image generation. Despite its success in continuous spaces,
discrete diffusion models, which apply to domains such as texts and natural
languages, remain under-studied and often suffer from slow generation speed. In
this paper, we propose a novel de-randomized diffusion process, which leads to
an accelerated algorithm for discrete diffusion models. Our technique
significantly reduces the number of function evaluations (i.e., calls to the
neural network), making the sampling process much faster. Furthermore, we
introduce a continuous-time (i.e., infinite-step) sampling algorithm that can
provide even better sample qualities than its discrete-time (finite-step)
counterpart. Extensive experiments on natural language generation and machine
translation tasks demonstrate the superior performance of our method in terms
of both generation speed and sample quality over existing methods for discrete
diffusion models.
- Abstract(参考訳): 拡散モデルは画像生成などの高品質なデータ生成のための強力なツールとして登場した。
連続空間での成功にもかかわらず、テキストや自然言語などの領域に適用される離散拡散モデルは未研究のままであり、しばしば生成速度の低下に悩まされる。
本稿では,分散拡散モデルのための高速化アルゴリズムを導出する新しい非ランダム拡散法を提案する。
提案手法は, ニューラルネットワークに対する関数評価の回数を大幅に削減し, サンプリング処理を高速化する。
さらに,連続時間(すなわち無限ステップ)サンプリングアルゴリズムを導入し,離散時間(有限ステップ)よりも優れたサンプル品質を提供する。
自然言語生成タスクと機械翻訳タスクに関する広範な実験は, 分散拡散モデルにおける既存手法よりも, 生成速度とサンプル品質の両方において, 優れた性能を示す。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - New algorithms for sampling and diffusion models [0.0]
本稿では,未知分布を持つ拡散生成モデルのための新しいサンプリング手法と新しいアルゴリズムを提案する。
我々のアプローチは、拡散生成モデルにおいて広く採用されている逆拡散過程の概念に着想を得たものである。
論文 参考訳(メタデータ) (2024-06-14T02:30:04Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
ガウス空間に基づく離散突然変異を再構成する学習において拡散モデルを容易にする軟吸収状態を導入する。
我々は、サンプリングプロセスの高速化のために、連続空間内で最先端のODEソルバを用いている。
提案手法は, トレーニング収束率を4倍に向上させ, 類似品質のサンプルを800倍高速に生成する。
論文 参考訳(メタデータ) (2023-10-09T15:29:10Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - A Reparameterized Discrete Diffusion Model for Text Generation [39.0145272152805]
本研究は, 離散拡散確率モデルと自然言語生成への応用に関する研究である。
離散拡散過程からサンプリングの代替的かつ等価な定式化を導出する。
本研究では,既存の拡散モデルに対して,テキスト生成能力を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-02-11T16:26:57Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
モーダリティ拡散プロセスと残差グランシングサンプリングを併用した拡散グランシング変換器を提案する。
DIFFGLATは、自己回帰モデルと非自己回帰モデルの両方と比較して、高速な復号速度を維持しながら、より優れた生成精度を実現する。
論文 参考訳(メタデータ) (2022-12-20T13:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。