論文の概要: ZeroRF: Fast Sparse View 360{\deg} Reconstruction with Zero Pretraining
- arxiv url: http://arxiv.org/abs/2312.09249v1
- Date: Thu, 14 Dec 2023 18:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 20:16:33.753500
- Title: ZeroRF: Fast Sparse View 360{\deg} Reconstruction with Zero Pretraining
- Title(参考訳): ZeroRF: Zero Pretraining を用いた高速スパースビュー 360{\deg} 再構成
- Authors: Ruoxi Shi, Xinyue Wei, Cheng Wang, Hao Su
- Abstract要約: Neural Radiance Fields (NeRF)のような現在のブレークスルーは、高忠実度画像合成を実証しているが、スパース入力ビューに苦慮している。
我々はZeroRFを提案し、その鍵となるアイデアは、カスタマイズされたDeep Image Priorを係数化されたNeRF表現に統合することである。
従来の方法とは異なり、ZeroRFはニューラルネットワークジェネレータでフィーチャーグリッドをパラメトリズし、効率的なスパースビュー360deg再構成を可能にする。
- 参考スコア(独自算出の注目度): 28.03297623406931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ZeroRF, a novel per-scene optimization method addressing the
challenge of sparse view 360{\deg} reconstruction in neural field
representations. Current breakthroughs like Neural Radiance Fields (NeRF) have
demonstrated high-fidelity image synthesis but struggle with sparse input
views. Existing methods, such as Generalizable NeRFs and per-scene optimization
approaches, face limitations in data dependency, computational cost, and
generalization across diverse scenarios. To overcome these challenges, we
propose ZeroRF, whose key idea is to integrate a tailored Deep Image Prior into
a factorized NeRF representation. Unlike traditional methods, ZeroRF
parametrizes feature grids with a neural network generator, enabling efficient
sparse view 360{\deg} reconstruction without any pretraining or additional
regularization. Extensive experiments showcase ZeroRF's versatility and
superiority in terms of both quality and speed, achieving state-of-the-art
results on benchmark datasets. ZeroRF's significance extends to applications in
3D content generation and editing. Project page:
https://sarahweiii.github.io/zerorf/
- Abstract(参考訳): ニューラルネットワーク表現におけるスパースビュー360{\deg}再構成の課題に対処する新しいシーンごとの最適化手法であるZeroRFを提案する。
Neural Radiance Fields (NeRF)のような現在のブレークスルーは、高忠実度画像合成を実証しているが、スパース入力ビューに苦慮している。
Generalizable NeRFsやSceneごとの最適化アプローチのような既存の手法では、データ依存、計算コスト、様々なシナリオにおける一般化の制限に直面している。
これらの課題を克服するため、我々はZeroRFを提案し、その鍵となるアイデアは、カスタマイズされたDeep Image Priorを係数化されたNeRF表現に統合することである。
従来の方法とは異なり、ZeroRFはニューラルネットワークジェネレータでフィーチャーグリッドをパラメトリズし、事前トレーニングや追加の正規化なしに効率的なスパースビュー360{\deg}再構成を可能にする。
大規模な実験では、ZeroRFの質とスピードの両面での汎用性と優位性を示し、ベンチマークデータセットで最先端の結果を達成する。
ZeroRFの意義は、3Dコンテンツ生成と編集の応用にまで及ぶ。
プロジェクトページ: https://sarahweiii.github.io/zerorf/
関連論文リスト
- SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with
Simpler Solutions [6.9980855647933655]
NeRFによって推定される深さの監視は、より少ないビューで効果的にトレーニングするのに役立つ。
我々は、位置エンコーディングとビュー依存放射能の役割を探求することによって、より単純な解決を促進する拡張モデルの設計を行う。
上記の正規化を用いて、2つの一般的なデータセット上での最先端のビュー合成性能を実現する。
論文 参考訳(メタデータ) (2023-09-07T18:02:57Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
既存のニューラルレージアンス場(NeRF)法は反射物体の存在に悩まされている。
並列部分空間における特徴場の群を用いてシーンを表現するマルチスペースニューラルレイディアンス場(MS-NeRF)を提案する。
提案手法は,高品質シーンのレンダリングにおいて,既存の単一空間NeRF法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-07T13:11:07Z) - ViP-NeRF: Visibility Prior for Sparse Input Neural Radiance Fields [9.67057831710618]
スパース入力ビューにおけるニューラルレイディアンス場(NeRF)のトレーニングは、過度な適合と不正確なシーン深さ推定につながる。
我々は、NeRFを再構成して、与えられた視点から3Dポイントの可視性を直接出力し、可視性制約でトレーニング時間を短縮する。
我々のモデルは、学習した先行データを含む、競合するスパース入力のNeRFモデルよりも優れています。
論文 参考訳(メタデータ) (2023-04-28T18:26:23Z) - Non-uniform Sampling Strategies for NeRF on 360{\textdegree} images [40.02598009484401]
本研究では,360度全方位画像に対して,NeRFを効果的に構築する2つの新しい手法を提案する。
我々は、360度画像に適合するNeRFのための2つの非一様線サンプリング手法を提案する。
提案手法は,360度画像における実世界のシーンの質を向上させる。
論文 参考訳(メタデータ) (2022-12-07T13:48:16Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
我々は、高分解能データによるNeRFのトレーニングに関する最初のパイロット研究を行う。
本稿では,多層パーセプトロンと畳み込み層との結合を含む,対応する解を提案する。
私たちのアプローチは、明らかなトレーニング/テストコストを導入することなく、ほぼ無償です。
論文 参考訳(メタデータ) (2022-11-17T17:22:28Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
我々は,NeRFトレーニングの正規化にロバストなデータ拡張のパワーを初めてもたらすAugmented NeRF(Aug-NeRF)を提案する。
提案手法では,最悪の場合の摂動を3段階のNeRFパイプラインにシームレスにブレンドする。
Aug-NeRFは、新しいビュー合成と基礎となる幾何再構成の両方において、NeRF性能を効果的に向上させる。
論文 参考訳(メタデータ) (2022-07-04T02:27:07Z) - SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single
Image [85.43496313628943]
本稿では,一眼レフ(SinNeRF)フレームワークについて述べる。
SinNeRFは半教師付き学習プロセスを構築し,幾何学的擬似ラベルを導入・伝播する。
NeRF合成データセット、Local Light Field Fusionデータセット、DTUデータセットなど、複雑なシーンベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2022-04-02T19:32:42Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
我々は、ニューラルネットワーク(NeRF)を活用して、建物にまたがる大規模な視覚的キャプチャーや、主にドローンデータから収集された複数の都市ブロックからインタラクティブな3D環境を構築する方法について検討する。
NeRFが伝統的に評価されている単一のオブジェクトシーンとは対照的に、この設定には複数の課題がある。
我々は、訓練画像(またはむしろピクセル)を、並列で訓練できる異なるNeRFサブモジュールに分割する単純なクラスタリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-12-20T17:40:48Z) - Recursive-NeRF: An Efficient and Dynamically Growing NeRF [34.768382663711705]
Recursive-NeRFは、NeRF(Neural Radiance Field)法の効率的なレンダリングおよびトレーニング手法である。
Recursive-NeRFはクエリ座標の不確かさを学習し、予測色の品質と各レベルの体積強度を表す。
3つの公開データセットについて評価したところ, 再帰型NeRFは, 最先端の品質を提供しながら, NeRFよりも効率的であることがわかった。
論文 参考訳(メタデータ) (2021-05-19T12:51:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。