Modeling and Predicting Epidemic Spread: A Gaussian Process Regression
Approach
- URL: http://arxiv.org/abs/2312.09384v1
- Date: Thu, 14 Dec 2023 22:45:01 GMT
- Title: Modeling and Predicting Epidemic Spread: A Gaussian Process Regression
Approach
- Authors: Baike She, Lei Xin, Philip E. Par\'e, Matthew Hale
- Abstract summary: We present a new method based on Gaussian Process Regression to model and predict epidemics.
We develop a novel bound on the variance of the prediction that quantifies the impact of the epidemic data.
We quantify how the epidemic spread, the infection data, and the length of the prediction horizon all affect this error bound.
- Score: 0.805635934199494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and prediction of epidemic spread are critical to assist in
policy-making for mitigation. Therefore, we present a new method based on
Gaussian Process Regression to model and predict epidemics, and it quantifies
prediction confidence through variance and high probability error bounds.
Gaussian Process Regression excels in using small datasets and providing
uncertainty bounds, and both of these properties are critical in modeling and
predicting epidemic spreading processes with limited data. However, the
derivation of formal uncertainty bounds remains lacking when using Gaussian
Process Regression in the setting of epidemics, which limits its usefulness in
guiding mitigation efforts. Therefore, in this work, we develop a novel bound
on the variance of the prediction that quantifies the impact of the epidemic
data on the predictions we make. Further, we develop a high probability error
bound on the prediction, and we quantify how the epidemic spread, the infection
data, and the length of the prediction horizon all affect this error bound. We
also show that the error stays below a certain threshold based on the length of
the prediction horizon. To illustrate this framework, we leverage Gaussian
Process Regression to model and predict COVID-19 using real-world infection
data from the United Kingdom.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models [2.11622808613962]
This study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models.
The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia.
arXiv Detail & Related papers (2020-05-24T10:43:55Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.