Modeling Epidemic Spread: A Gaussian Process Regression Approach
- URL: http://arxiv.org/abs/2312.09384v3
- Date: Thu, 21 Nov 2024 22:17:12 GMT
- Title: Modeling Epidemic Spread: A Gaussian Process Regression Approach
- Authors: Baike She, Lei Xin, Philip E. Paré, Matthew Hale,
- Abstract summary: We present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread.
We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic.
- Score: 0.7374726900469741
- License:
- Abstract: Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound the variance of the predictions made by GPR, which quantifies the impact of epidemic data on the proposed model. Next, we derive a high-probability error bound on the prediction error in terms of the distance between the training points and a testing point, the posterior variance, and the level of change in the spreading process, and we assess how the characteristics of the epidemic spread and infection data influence this error bound. We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic. These examples illustrate that, under typical conditions, the prediction for the next twenty days has 94.29% of the noisy data located within the 95% confidence interval, validating these predictions. We further compare the modeling and prediction results with other methods, such as polynomial regression, k-nearest neighbors (KNN) regression, and neural networks, to demonstrate the benefits of leveraging GPR in disease spread modeling.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models [2.11622808613962]
This study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models.
The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia.
arXiv Detail & Related papers (2020-05-24T10:43:55Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.