論文の概要: Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks
- arxiv url: http://arxiv.org/abs/2312.09554v3
- Date: Fri, 26 Jul 2024 11:54:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 18:31:34.081317
- Title: Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks
- Title(参考訳): エボダイドレーザー攻撃:エージェントによるロバスト非接触攻撃に先立つ場面
- Authors: Yitong Sun, Yao Huang, Xingxing Wei,
- Abstract要約: 本稿では,非接触レーザー攻撃を動的に調整する新しい枠組みであるEmbodied Laser Attack (ELA)を紹介する。
認識モジュールのために,ERAは交通シーンの本質的な事前知識に基づいて,局所的な視点変換ネットワークを革新的に開発してきた。
決定と制御モジュールのために、ERAは時間を要するアルゴリズムを採用する代わりに、データ駆動の強化学習で攻撃エージェントを訓練する。
- 参考スコア(独自算出の注目度): 13.726534285661717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As physical adversarial attacks become extensively applied in unearthing the potential risk of security-critical scenarios, especially in dynamic scenarios, their vulnerability to environmental variations has also been brought to light. The non-robust nature of physical adversarial attack methods brings less-than-stable performance consequently. Although methods such as EOT have enhanced the robustness of traditional contact attacks like adversarial patches, they fall short in practicality and concealment within dynamic environments such as traffic scenarios. Meanwhile, non-contact laser attacks, while offering enhanced adaptability, face constraints due to a limited optimization space for their attributes, rendering EOT less effective. This limitation underscores the necessity for developing a new strategy to augment the robustness of such practices. To address these issues, this paper introduces the Embodied Laser Attack (ELA), a novel framework that leverages the embodied intelligence paradigm of Perception-Decision-Control to dynamically tailor non-contact laser attacks. For the perception module, given the challenge of simulating the victim's view by full-image transformation, ELA has innovatively developed a local perspective transformation network, based on the intrinsic prior knowledge of traffic scenes and enables effective and efficient estimation. For the decision and control module, ELA trains an attack agent with data-driven reinforcement learning instead of adopting time-consuming heuristic algorithms, making it capable of instantaneously determining a valid attack strategy with the perceived information by well-designed rewards, which is then conducted by a controllable laser emitter. Experimentally, we apply our framework to diverse traffic scenarios both in the digital and physical world, verifying the effectiveness of our method under dynamic successive scenes.
- Abstract(参考訳): 物理的敵攻撃が、特に動的シナリオにおいて、セキュリティクリティカルなシナリオの潜在的なリスクを発掘するために広範囲に適用されるようになると、それらの環境変動に対する脆弱性も明らかになってきた。
物理的敵攻撃手法の非破壊的な性質は、結果としてより不安定な性能をもたらす。
EOTのような手法は、敵のパッチのような従来の接触攻撃の堅牢性を高めるが、現実性や交通シナリオのような動的環境の隠蔽は不十分である。
一方、非接触レーザー攻撃は適応性の向上を提供する一方で、属性の最適化スペースが限られているため制約に直面し、EOTの効率は低下した。
この制限は、そのようなプラクティスの堅牢性を高めるための新しい戦略を開発する必要性を浮き彫りにする。
これらの問題に対処するため,本研究では,知覚・決定・制御の具体的インテリジェンスパラダイムを活用し,非接触レーザー攻撃を動的に調整する新しいフレームワークであるEmbodied Laser Attack (ELA)を紹介する。
フルイメージ変換による被害者の視界のシミュレートという課題を踏まえて,ELAは交通シーンの内在的な事前知識に基づいて,局所的な視点変換ネットワークを革新的に開発し,効果的かつ効率的な推定を可能にした。
判定制御モジュールに対して、ERAは、時間を要するヒューリスティックアルゴリズムを採用するのではなく、データ駆動強化学習による攻撃エージェントを訓練し、適切に設計された報酬によって認識された情報で有効な攻撃戦略を即時に決定し、制御可能なレーザーエミッタによって実行されるようにする。
実験では,デジタル・物理的両世界の多様な交通シナリオに適用し,動的連続シーン下での手法の有効性を検証した。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack [6.101494710781259]
本稿では,3次元物体追跡の文脈において,敵攻撃を行うための統一的なフレームワークを提案する。
ブラックボックス攻撃のシナリオに対処するために,新たなトランスファーベースアプローチであるTarget-aware Perturbation Generation (TAPG)アルゴリズムを導入する。
実験の結果,ブラックボックスとホワイトボックスの両方の攻撃を受けた場合,高度な追跡手法に重大な脆弱性があることが判明した。
論文 参考訳(メタデータ) (2024-10-28T10:20:38Z) - A Proactive Decoy Selection Scheme for Cyber Deception using MITRE ATT&CK [0.9831489366502301]
サイバー詐欺は、攻撃者の戦術、技術、手順(TTP)に対する守備隊の遅さを補うことができる。
本研究では,実世界の攻撃者の経験的観察に基づく敵モデルにより支援されたデコイ選択方式を設計する。
その結果,提案手法は最小のデコイを用いた攻撃経路のインターセプション率が最も高いことがわかった。
論文 参考訳(メタデータ) (2024-04-19T10:45:05Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
ディープニューラルネットワークはコンピュータビジョンタスクにおいて優れたパフォーマンスを示すが、現実の敵攻撃に対する脆弱性は深刻なセキュリティ上の懸念を引き起こす。
本稿では、敵チャネルの注意力を利用して、浅いネットワーク層における悪意のある物体を素早く識別・追跡する、効果的な注意に基づく防御機構を提案する。
また、効率的な多フレーム防御フレームワークを導入し、防御性能と計算コストの両方を評価することを目的とした広範な実験を通じて、その有効性を検証した。
論文 参考訳(メタデータ) (2023-11-19T00:47:17Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adv-Attribute (Adv-Attribute) は、顔認証に対する不明瞭で伝達可能な攻撃を生成するように設計されている。
FFHQとCelebA-HQデータセットの実験は、提案されたAdv-Attributeメソッドが最先端の攻撃成功率を達成することを示している。
論文 参考訳(メタデータ) (2022-10-13T09:56:36Z) - Shadows can be Dangerous: Stealthy and Effective Physical-world
Adversarial Attack by Natural Phenomenon [79.33449311057088]
我々は、非常に一般的な自然現象であるシャドーによって摂動が生じる新しい種類の光対角運動例について研究する。
我々は,シミュレーション環境と実環境の両方において,この新たな攻撃の有効性を広く評価した。
論文 参考訳(メタデータ) (2022-03-08T02:40:18Z) - Targeted Attack on Deep RL-based Autonomous Driving with Learned Visual
Patterns [18.694795507945603]
近年の研究では、敵の攻撃に対する深い強化学習を通じて学んだコントロールポリシーの脆弱性が実証されている。
本研究では, 物理的対象物に配置した視覚的学習パターンを用いて, 標的攻撃の実現可能性について検討する。
論文 参考訳(メタデータ) (2021-09-16T04:59:06Z) - A Practical Adversarial Attack on Contingency Detection of Smart Energy
Systems [0.0]
本稿では,エネルギーシステムの動的制御を実質的に損なうことのできる,革新的な敵攻撃モデルを提案する。
また、深層強化学習(RL)技術を用いて、提案した敵攻撃モデルの展開を最適化する。
論文 参考訳(メタデータ) (2021-09-13T23:11:56Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。