論文の概要: Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack
- arxiv url: http://arxiv.org/abs/2410.20893v1
- Date: Mon, 28 Oct 2024 10:20:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:22:22.411354
- Title: Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack
- Title(参考訳): 対向攻撃に対するLiDAR点群追跡のロバスト性評価
- Authors: Shengjing Tian, Yinan Han, Xiantong Zhao, Bin Liu, Xiuping Liu,
- Abstract要約: 本稿では,3次元物体追跡の文脈において,敵攻撃を行うための統一的なフレームワークを提案する。
ブラックボックス攻撃のシナリオに対処するために,新たなトランスファーベースアプローチであるTarget-aware Perturbation Generation (TAPG)アルゴリズムを導入する。
実験の結果,ブラックボックスとホワイトボックスの両方の攻撃を受けた場合,高度な追跡手法に重大な脆弱性があることが判明した。
- 参考スコア(独自算出の注目度): 6.101494710781259
- License:
- Abstract: In this study, we delve into the robustness of neural network-based LiDAR point cloud tracking models under adversarial attacks, a critical aspect often overlooked in favor of performance enhancement. These models, despite incorporating advanced architectures like Transformer or Bird's Eye View (BEV), tend to neglect robustness in the face of challenges such as adversarial attacks, domain shifts, or data corruption. We instead focus on the robustness of the tracking models under the threat of adversarial attacks. We begin by establishing a unified framework for conducting adversarial attacks within the context of 3D object tracking, which allows us to thoroughly investigate both white-box and black-box attack strategies. For white-box attacks, we tailor specific loss functions to accommodate various tracking paradigms and extend existing methods such as FGSM, C\&W, and PGD to the point cloud domain. In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm, with the dual objectives of achieving high attack performance and maintaining low perceptibility. This method employs a heuristic strategy to enforce sparse attack constraints and utilizes random sub-vector factorization to bolster transferability. Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks, underscoring the necessity for incorporating robustness against adversarial attacks into the design of LiDAR point cloud tracking models. Notably, compared to existing methods, the TAPG also strikes an optimal balance between the effectiveness of the attack and the concealment of the perturbations.
- Abstract(参考訳): 本研究では,ニューラルネットワークをベースとしたLiDARポイントクラウド追跡モデルにおいて,敵攻撃下でのロバスト性について検討する。
これらのモデルは、TransformerやBird's Eye View (BEV)のような高度なアーキテクチャを取り入れたものの、敵攻撃、ドメインシフト、データ破損といった課題に直面して、ロバストさを無視する傾向がある。
代わりに、敵の攻撃の脅威の下で追跡モデルの堅牢性に焦点を当てます。
まず,3次元物体追跡の文脈内で敵攻撃を行うための統一的な枠組みを構築し,ホワイトボックスとブラックボックスの攻撃戦略を徹底的に調査する。
ホワイトボックス攻撃では、様々な追跡パラダイムに対応できるように特定の損失関数を調整し、FGSM、C\&W、PGDといった既存の手法をポイントクラウド領域に拡張する。
ブラックボックス攻撃のシナリオに対処するため,我々は新たなトランスファーベースアプローチであるTarget-aware Perturbation Generation (TAPG)アルゴリズムを導入する。
この手法はスパース攻撃の制約を強制するためのヒューリスティック戦略を採用し、ランダムなサブベクトル分解を利用して転送可能性を高める。
実験結果から, ブラックボックス攻撃とホワイトボックス攻撃の両方を対象とする場合, 高度な追跡手法に重大な脆弱性があることが判明した。
特に、既存の方法と比較して、TAPGは攻撃の有効性と摂動の隠蔽との間に最適なバランスを取る。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - ADoPT: LiDAR Spoofing Attack Detection Based on Point-Level Temporal
Consistency [11.160041268858773]
ディープニューラルネットワーク(DNN)は、自動運転車(AV)のためのLiDARベースの知覚システムにますます統合されている
我々は,攻撃者がLiDARデータに偽のオブジェクトを注入し,その環境を誤解釈して誤った判断を下すという,LiDAR偽造攻撃の課題に対処することを目指している。
ADoPT (Anomaly Detection based on Point-level Temporal consistency) は、連続するフレーム間の時間的一貫性を定量的に測定し、ポイントクラスタのコヒーレンシーに基づいて異常物体を同定する。
nuScenesデータセットを用いた評価では、アルゴリズムは様々なLiDARスプーフィング攻撃に対して効果的に対応し、低(低)を実現している。
論文 参考訳(メタデータ) (2023-10-23T02:31:31Z) - ChatGPT as an Attack Tool: Stealthy Textual Backdoor Attack via Blackbox
Generative Model Trigger [11.622811907571132]
テキストバックドア攻撃は既存のシステムに現実的な脅威をもたらす。
GPT-4のような最先端の生成モデルでは、リライトを異常なレベルに押し上げるため、そのような攻撃はより検出しにくくなっている。
我々は、バックドア攻撃ツールとしてのブラックボックス生成モデルの役割を包括的に調査し、相対防衛戦略の研究の重要性を強調した。
論文 参考訳(メタデータ) (2023-04-27T19:26:25Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Understanding Adversarial Attacks on Observations in Deep Reinforcement
Learning [32.12283927682007]
深層強化学習モデルは、観測を操作することで被害者の総報酬を減少させる敵攻撃に対して脆弱である。
関数空間における逆攻撃の問題を修正し、以前の勾配に基づく攻撃をいくつかの部分空間に分割する。
第一段階では、環境をハックして偽装ポリシーを訓練し、最下位の報酬にルーティングするトラジェクトリのセットを発見する。
本手法は,攻撃エージェントの性能に対して,既存の手法よりも厳密な理論上界を提供する。
論文 参考訳(メタデータ) (2021-06-30T07:41:51Z) - Robust Tracking against Adversarial Attacks [69.59717023941126]
まず,ビデオシーケンス上に敵の例を生成して,敵の攻撃に対するロバスト性を改善する。
提案手法を最先端のディープトラッキングアルゴリズムに適用する。
論文 参考訳(メタデータ) (2020-07-20T08:05:55Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。