Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
- URL: http://arxiv.org/abs/2312.09597v2
- Date: Fri, 12 Jul 2024 22:11:43 GMT
- Title: Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
- Authors: Baran Hashemi, Claudius Krause,
- Abstract summary: Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions.
The complete simulation of them in a detector is a computational and storage-intensive task.
We conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern collider experiments, the quest to explore fundamental interactions between elementary particles has reached unparalleled levels of precision. Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions (the final state particles of hard scattering interactions). The complete simulation of them in a detector is a computational and storage-intensive task. To address this computational bottleneck in particle physics, alternative approaches have been developed, introducing additional assumptions and trade off accuracy for speed.The field has seen a surge in interest in surrogate modeling the detector simulation, fueled by the advancements in deep generative models. These models aim to generate responses that are statistically identical to the observed data. In this paper, we conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures from both methodological and application-wise perspectives. Initially, we formulate the problem of detector signature simulation and discuss its different variations that can be unified. Next, we classify the state-of-the-art methods into five distinct categories based on their underlying model architectures, summarizing their respective generation strategies. Finally, we shed light on the challenges and opportunities that lie ahead in detector signature simulation, setting the stage for future research and development.
Related papers
- A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
"Fast Simulation" has been pivotal in overcoming computational bottlenecks.
The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations.
Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers.
arXiv Detail & Related papers (2024-06-08T11:17:28Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment.
This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics.
arXiv Detail & Related papers (2024-03-05T23:12:47Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Evaluating generative models in high energy physics [7.545095780512178]
We present the first systematic review and investigation into evaluation metrics and their sensitivity to failure modes of generative models.
We propose two new metrics, the Fr'echet and kernel physics distances (FPD and KPD, respectively), and perform a variety of experiments measuring their performance.
We demonstrate the efficacy of these proposed metrics in evaluating and comparing a novel attention-based generative adversarial particle transformer to the state-of-the-art message-passing generative adversarial network jet simulation model.
arXiv Detail & Related papers (2022-11-18T15:36:28Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Simulation-Assisted Decorrelation for Resonant Anomaly Detection [1.5675763601034223]
A growing number of weak- and unsupervised machine learning approaches to anomaly detection are being proposed.
One of the examples is the search for resonant new physics, where a bump hunt can be performed in an invariant mass spectrum.
We explore two solutions to this challenge by incorporating minimally prototypical simulation into the learning.
arXiv Detail & Related papers (2020-09-04T14:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.