Accurate and gate-efficient quantum ansätze for electronic states without adaptive optimisation
- URL: http://arxiv.org/abs/2312.09761v4
- Date: Thu, 25 Apr 2024 15:13:08 GMT
- Title: Accurate and gate-efficient quantum ansätze for electronic states without adaptive optimisation
- Authors: Hugh G. A. Burton,
- Abstract summary: Quantum algorithms require accurate representations of electronic states on a quantum device.
Current approximations struggle to combine chemical accuracy and gate-efficiency.
We present a symmetry-preserving and gate-efficient ansatz that provides chemically accurate molecular energies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of quantum computers to overcome the exponential memory scaling of many-body problems is expected to transform quantum chemistry. Quantum algorithms require accurate representations of electronic states on a quantum device, but current approximations struggle to combine chemical accuracy and gate-efficiency while preserving physical symmetries, and rely on measurement-intensive adaptive methods that tailor the wave function ansatz to each molecule. In this contribution, we present a symmetry-preserving and gate-efficient ansatz that provides chemically accurate molecular energies with a well-defined circuit structure. Our approach exploits local qubit connectivity, orbital optimisation, and connections with generalised valence bond theory to maximise the accuracy that is obtained with shallow quantum circuits. Numerical simulations for molecules with weak and strong electron correlation, including benzene, water, and the singlet-triplet gap in tetramethyleneethane, demonstrate that chemically accurate energies are achieved with as much as 84% fewer two-qubit gates compared to state-of-the-art adaptive ansatz techniques.
Related papers
- Fast-forwarding molecular ground state preparation with optimal control
on analog quantum simulators [0.0]
We show that optimal control of the electron dynamics is able to prepare molecular ground states, within chemical accuracy.
We propose a specific parameterization of the molecular evolution only in terms of interaction already present in the molecular Hamiltonian.
arXiv Detail & Related papers (2024-02-18T18:05:36Z) - Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations
of Benzene [0.2624902795082451]
Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz.
We employ several circuit optimization methods tailored for trapped-ion quantum devices to enhance the feasibility of intricate chemical simulations.
These methods, when applied to a benzene molecule simulation, enabled the construction of an 8-qubit circuit with 69 two-qubit entangling operations.
arXiv Detail & Related papers (2023-08-01T17:03:10Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Exact electronic states with shallow quantum circuits through global
optimisation [0.0]
Quantum computers promise to revolutionise electronic simulations by overcoming the exponential scaling of many-electron problems.
We construct universal wave functions from gate-efficient, symmetry-preserving fermionic operators.
Our algorithm reliably advances the state-of-the-art, defining a new paradigm for quantum simulations featuring strong electron correlation.
arXiv Detail & Related papers (2022-06-30T20:03:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories [8.24048506727803]
We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
arXiv Detail & Related papers (2022-01-23T09:38:46Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.