Quantum Algorithm for Solving the Advection Equation using Hamiltonian Simulation
- URL: http://arxiv.org/abs/2312.09784v3
- Date: Wed, 19 Jun 2024 12:48:43 GMT
- Title: Quantum Algorithm for Solving the Advection Equation using Hamiltonian Simulation
- Authors: Peter Brearley, Sylvain Laizet,
- Abstract summary: One-dimensional advection can be simulated directly since the central finite difference operator for first-order derivatives is anti-Hermitian.
A single copy of the initial quantum state is required and the circuit depth grows linearly with the required number of time steps.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum algorithm for solving the advection equation by embedding the discrete time-marching operator into Hamiltonian simulations is presented. One-dimensional advection can be simulated directly since the central finite difference operator for first-order derivatives is anti-Hermitian. Here, this is extended to industrially relevant, multi-dimensional flows with realistic boundary conditions and arbitrary finite difference stencils. A single copy of the initial quantum state is required and the circuit depth grows linearly with the required number of time steps, the sparsity of the time-marching operator and the inverse of the allowable error. Statevector simulations of a scalar transported in a two-dimensional channel flow and lid-driven cavity configuration are presented as a proof of concept of the proposed approach.
Related papers
- Quantum Algorithm for the Advection-Diffusion Equation with Optimal Success Probability [0.0]
The explicit time-marching operator is separated into an advection-like component and a corrective shift operator.
The result is an unscaled block encoding of the time-marching operator with an optimal success probability.
arXiv Detail & Related papers (2024-10-10T13:37:08Z) - Quantum algorithm for the advection-diffusion equation and the Koopman-von Neumann approach to nonlinear dynamical systems [0.0]
We propose an explicit algorithm to simulate both the advection-diffusion equation and a nonunitary discretized version of the Koopman-von Neumann formulation of nonlinear dynamics.
The proposed algorithm is universal and can be used for modeling a broad class of linear and nonlinear differential equations.
arXiv Detail & Related papers (2024-10-04T23:58:12Z) - Improving Pseudo-Time Stepping Convergence for CFD Simulations With
Neural Networks [44.99833362998488]
Navier-Stokes equations may exhibit a highly nonlinear behavior.
The system of nonlinear equations resulting from the discretization of the Navier-Stokes equations can be solved using nonlinear iteration methods, such as Newton's method.
In this paper, pseudo-transient continuation is employed in order to improve nonlinear convergence.
arXiv Detail & Related papers (2023-10-10T15:45:19Z) - A quantum algorithm for the linear Vlasov equation with collisions [0.0]
We present a quantum algorithm that simulates the linearized Vlasov equation with and without collisions.
We show that a quadratic speedup in system size is attainable.
arXiv Detail & Related papers (2023-03-06T19:19:30Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Second-order flows for computing the ground states of rotating
Bose-Einstein condensates [5.252966797394752]
Some artificial evolutionary differential equations involving second-order time derivatives are considered to be first-order.
The proposed artificial dynamics are novel second-order hyperbolic partial differential equations with dissipation.
New algorithms are superior to the state-of-the-art numerical methods based on the gradient flow.
arXiv Detail & Related papers (2022-05-02T10:45:49Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.